DOI QR코드

DOI QR Code

Design, setup and routine operation of a water treatment system for the monitoring of low activities of tritium in water

  • C.D.R. Azevedo (I3N - Departamento de Fisica da Universidade de Aveiro) ;
  • A. Baeza (Laboratorio de Radiactividad Ambiental, Universidad de Extremadura) ;
  • E. Chauveau (Universite de Bordeaux and CNRS, CENBG) ;
  • J.A. Corbacho (Departamento de Fisica Aplicada, Centro Universitario de Merida, Universidad de Extremadura) ;
  • J. Diaz (Instituto de Física Corpuscular, Centro mixto CSIC-Universidad de Valencia) ;
  • J. Domange (Universite de Bordeaux and CNRS, CENBG) ;
  • C. Marquet (Universite de Bordeaux and CNRS, CENBG) ;
  • M. Martinez-Roig (Instituto de Física Corpuscular, Centro mixto CSIC-Universidad de Valencia) ;
  • F. Piquemal (Universite de Bordeaux and CNRS, CENBG) ;
  • C. Roldan (Departamento de Física Aplicada, Universidad de Valencia) ;
  • J. Vasco (Laboratorio de Radiactividad Ambiental, Universidad de Extremadura) ;
  • J.F.C.A. Veloso (I3N - Departamento de Fisica da Universidade de Aveiro) ;
  • N. Yahlali (Instituto de Física Corpuscular, Centro mixto CSIC-Universidad de Valencia)
  • Received : 2022.09.24
  • Accepted : 2023.03.28
  • Published : 2023.07.25

Abstract

In the TRITIUM project, an on-site monitoring system is being developed to measure tritium (3H) levels in water near nuclear power plants. The quite low-energy betas emitted by 3H have a very short average path in water (5 ㎛ as shown by simulations for 18 keV electrons). This path would be further reduced by impurities present in the water, resulting in a significant reduction of the detection efficiency. Therefore, one of the essential requirements of the project is the elimination of these impurities through a filtration process and the removal of salts in solution. This paper describes a water treatment system developed for the project that meets the following requirements: the water produced should be of near-pure water quality according to ISO 3696 grade 3 standard (conductivity < 10 µS/cm); the system should operate autonomously and be remotely monitored.

Keywords

Acknowledgement

This work was supported by the INTERREG-SUDOE EEC program through the project TRITIUM - SOE1/P4/E0214 entitled: "Diseno, construccion y puesta a punto de estaciones automaticas para el monitoraje en tiempo real de bajos niveles radiactivos de tritio en aguas".

References

  1. C.D.R. Azevedo, A. Baeza, M. Bras, T. Camara, C. Cerna, E. Chauveau, J.M. Gil, J.A. Corbacho, V. Delgado, J. Diaz, J. Domange, C. Marquet, M. Martinez-Roig, A. Moreno, F. Piquemal, A. Rodriguez, J. Rodriguez, C. Roldan, J.F.C.A. Veloso, N. Yahlali, TRITIUM - a real-time tritium monitor system for water quality surveillance, in: 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC), IEEE, 2018, pp. 1-6, https://doi.org/10.1109/NSSMIC.2018.8824700.
  2. A. Baeza, A.M. Brogueira, M.C.V. Carreiro, E. Garcia, J.M. Gil, C. Miro, M.M. Sequeira, M.M.R. Teixeira, Spatial and temporal evolution of the levels of tritium in the Tagus River in its passage through Caceres (Spain) and the Alentejo (Portugal), Water Res. 35 (3) (2001) 705-714, https://doi.org/10.1016/S0043-1354(00)00302-X.
  3. C.D.R. Azevedo, A. Baeza, E. Chauveau, J.A. Corbacho, J. Diaz, J. Domange, C. Marquet, M. Martinez-Roig, F. Piquemal, J.F.C.A. Veloso, N. Yahlali, Simulation results of a real-time in water tritium monitor, Nucl. Instrum Meth A 982 (2020), 164555, https://doi.org/10.1016/j.nima.2020.164555.
  4. P. Glueckstern, Design and operation of medium-and small-size desalination plants in remote areas: new perspective for improved reliability, durability and lower costs, Desalination 122 (2-3) (1999) 123-140, https://doi.org/10.1016/S0011-9164(99)00033-8.
  5. S.A. Avlonitis, Operational water cost and productivity improvements for small-size RO desalination plants, Desalination 142 (3) (2002) 295-304, https://doi.org/10.1016/S0011-9164(02)00210-2.
  6. M. Clever, F. Jordt, R. Knauf, N. Rabiger, M. Rudebusch, R. Hilker-Scheibel, € Process water production from river water by ultrafiltration and reverse osmosis, Desalination 131 (1-3) (2000) 325-336, https://doi.org/10.1016/S0011-9164(00)90031-6.
  7. B. Bouchekima, A small solar desalination plant for the production of drinking water in remote arid areas of southern Algeria, Desalination 159 (2) (2003) 197-204, https://doi.org/10.1016/S0011-9164(03)90071-3.
  8. International Organization for Standarization (ISO), Water for Analytical Laboratory Use - Specification and Test Methods, 1987. ISO 3696:1987.
  9. M.A. Ontalba, J.A. Corbacho, A. Baeza, J. Vasco, J.M. Caballero, D. Valencia, J.A. Baeza, Radiological Alert Network of Extremadura (RAREx) in 2021: 30 years of development and current performance of real-time monitoring, Nucl. Eng. Technol. 54 (2) (2022) 770-780, https://doi.org/10.1016/j.net.2021.08.007.
  10. A. Baeza, J.M. Caballero, J.A. Corbacho, M.A. Ontalba, J. Vasco, Proposed improvements to existing water monitoring systems in automatic radiological warning networks, J. Radiol. Prot. 34 (2) (2014) 313-324, https://doi.org/10.1088/0952-4746/34/2/313.
  11. International Organization for Standarization (ISO), General Requirements for the Competence of Testing and Calibration Laboratories, 2017. ISO/IEC 17025.
  12. International Organization for Standarization (ISO), Determination of the Characteristic Limits (Decision Threshold, Detection Limit and Limits of the Confidence Interval) for Measurements of Ionizing Radiation- Fundamentals and Application, 2010, p. 2010. ISO 11929.
  13. International Organization for Standarization (ISO), Water Quality Determination of the Activity Concentration of Radionuclides by High-Resolution Gamma-Ray Spectrometry, 2007. ISO 10703:2007(E).