Acknowledgement
The authors would like to thank the reviewers for their constructive comments in upgrading the article.
References
- R. Agarwal, S. Hristova, and D. O'Regan, Non-Instantaneous Impulses in Differential Equations, Springer, Cham, 2017. https://doi.org/10.1007/978-3-319-66384-5
- A. Ahmadova and N. I. Mahmudov, Existence and uniqueness results for a class of fractional stochastic neutral differential equations, Chaos Solitons Fractals 139 (2020), 110253, 8 pp. https://doi.org/10.1016/j.chaos.2020.110253
- S. Andr'as and A. R. M'esz'aros, Ulam-Hyers stability of elliptic partial differential equations in Sobolev spaces, Appl. Math. Comput. 229 (2014), 131-138. https://doi.org/10.1016/j.amc.2013.12.021
- A. Anguraj, K. Ramkumar, and K. Ravikumar, Existence and Hyers-Ulam stability of random impulsive stochastic functional integrodifferential equations with finite delays, Comput. Methods Differ. Equ. 10 (2022), no. 1, 191-199.
- A. Anguraj and A. Vinodkumar, Existence and uniqueness of neutral functional differential equations with random impulses, Int. J. Nonlinear Sci. 8 (2009), no. 4, 412-418.
- A. Anguraj and A. Vinodkumar, Existence, uniqueness and stability results of random impulsive semilinear differential systems, Nonlinear Anal. Hybrid Syst. 4 (2010), no. 3, 475-483. https://doi.org/10.1016/j.nahs.2009.11.004
- E. Gselmann, Stability properties in some classes of second order partial differential equations, Results Math. 65 (2014), no. 1-2, 95-103. https://doi.org/10.1007/s00025-013-0332-8
- J. Huang, S.-M. Jung, and Y. Li, On Hyers-Ulam stability of nonlinear differential equations, Bull. Korean Math. Soc. 52 (2015), no. 2, 685-697. https://doi.org/10.4134/BKMS.2015.52.2.685
- D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
- S.-M. Jung, Hyers-Ulam stability of linear differential equations of first order. II, Appl. Math. Lett. 19 (2006), no. 9, 854-858. https://doi.org/10.1016/j.aml.2005.11.004
- A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006.
- S. Li, L. Shu, X. Shu, and F. Xu, Existence and Hyers-Ulam stability of random impulsive stochastic functional differential equations with finite delays, Stochastics 91 (2019), no. 6, 857-872. https://doi.org/10.1080/17442508.2018.1551400
- K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1993.
- I. Podlubny, Fractional differential equations, Mathematics in Science and Engineering, 198, Academic Press, Inc., San Diego, CA, 1999.
- B. Radhakrishnan, M. Tamilarasi, and P. Anukokila, Existence, uniqueness and stability results for semilinear integrodifferential non-local evolution equations with random impulse, Filomat 32 (2018), no. 19, 6615-6626. https://doi.org/10.2298/fil1819615r
- R. Raja, U. K. Raja, R. Samidurai, and A. Leelamani, Passitivity analysis for uncertain discrete-time stochastic BAM neutral networks with time-varying delays, Neutral Comput. Appl. 25 (2014), 751-766.
- S. M. Ulam, A collection of mathematical problems, Interscience Tracts in Pure and Applied Mathematics, no. 8, Interscience Publishers, New York, 1960.
- A. Vinodkumar, M. Gowrisankar, and P. Mohankumar, Existence, uniqueness and stability of random impulsive neutral partial differential equations, J. Egyptian Math. Soc. 23 (2015), no. 1, 31-36. https://doi.org/10.1016/j.joems.2014.01.005
- A. Vinodkumar, K. Malar, M. Gowrisankar, and P. Mohankumar, Existence, uniqueness and stability of random impulsive fractional differential equations, Acta Math. Sci. Ser. B (Engl. Ed.) 36 (2016), no. 2, 428-442. https://doi.org/10.1016/S0252-9602(16)30010-8
- X. Wang, D. Luo, Z. Luo, and A. Zada, Ulam-Hyers stability of Caputo-type fractional stochastic differential equations with time delays, Math. Probl. Eng. 2021 (2021), Art. ID 5599206, 24 pp. https://doi.org/10.1155/2021/5599206
- S. J. Wu and B. Zhou, Existence and uniqueness of stochastic differential equations with random impulses and Markovian switching under non-Lipschitz conditions, Acta Math. Sin. (Engl. Ser.) 27 (2011), no. 3, 519-536. https://doi.org/10.1007/s10114-011-9753-z
- Y. Zhou, J. R. Wang, and L. Zhang, Basic Theory of Fractional Differential Equations, World scientific, Singapore, 2014.
- Q. Zhu, Stability analysis of stochastic delay differential equations with Levy noise, Systems Control Lett. 118 (2018), 62-68. https://doi.org/10.1016/j.sysconle.2018.05.015
- Q. Zhu and T. Huang, Stability analysis for a class of stochastic delay nonlinear systems driven by G-Brownian motion, Systems Control Lett. 140 (2020), 104699, 9 pp. https://doi.org/10.1016/j.sysconle.2020.104699
- Q. Zhu and B. Song, Exponential stability of impulsive nonlinear stochastic differential equations with mixed delays, Nonlinear Anal. Real World Appl. 12 (2011), no. 5, 2851-2860. https://doi.org/10.1016/j.nonrwa.2011.04.011