DOI QR코드

DOI QR Code

Gene Expression Profiles of Long-Chain Acyl-Coenzyme A Dehydrogenase, Nuclear Distribution C-Containing Protein 3, and Receptor Tyrosine Kinase Tie-1 in Swimming Larva of Sea Cucumber Apostichopus japonicus

  • Sehwan Kim (Department of Marine Bioscience, Gangneung-Wonju National University) ;
  • Seungheon Lee (Department of Marine Bioscience, Gangneung-Wonju National University) ;
  • Gil Jung Kim (Department of Marine Bioscience, Gangneung-Wonju National University) ;
  • Young Chang Sohn (Department of Marine Bioscience, Gangneung-Wonju National University)
  • 투고 : 2023.04.05
  • 심사 : 2023.06.09
  • 발행 : 2023.06.30

초록

The sea cucumber, Apostichopus japonicus, is one of the most valuable aquatic species. The color of body wall and appearance are important for the value of sea cucumbers. To examine expression pattern of long-chain acyl-coenzyme A dehydrogenase (LCAD), nuclear distribution C-containing protein 3 (NUDCD3), and receptor tyrosine kinase Tie-1 (TIE1), previously reported as differently expressed genes during the pigmentation of sea cucumber, we analyzed the temporal profiles of LCAD, NUDCD3, and TIE1 mRNAs in LED-exposed and light-shielded A. japonicus. Real-time quantitative PCR revealed that the LCAD, NUDCD3, and TIE1 mRNAs from the juveniles at 40-60 days post-fertilization (dpf) exhibited increasing patterns as compared to those of an early developmental larva (6-dpf). At 60-dpf juveniles, the LCAD and TIE1 mRNA levels of LED-exposed individuals were higher than those of light-shielded ones, whereas at 40-dpf and 50-dpf juveniles, the NUDCD3 mRNA expression was higher in the light-shielded condition (p<0.05). In the pigmented juveniles (90-dpf), the LCAD and TIE1 mRNA levels tended to show higher levels in red individuals than those in green ones, but there was a conversely higher level of NUDCD3 mRNA in green larva. In situ examination of LCAD and NUDCD3 mRNAs in light-shielded 6-dpf larva revealed that both genes are mainly expressed in the internal organs compared to the body surface. Together, these results may provide insights into the differential gene expression of LCAD, NUDCD3, and TIE1 during pigmentation process of the sea cucumber.

키워드

과제정보

We are grateful to Dr. Young Guk Jin, National Institute of Fisheries Science, Korea, and Bangrae Kim, senior researcher, Samcheok Fisheries Resource Center, Korea, and Dr. Jae Ok Kim, Korea National Fishery Products Quality Management Service, Korea, and Hyun Jin Kim, Dept. of Aqualife Medicine, Chonnam National University, Korea, for their comments and critical reading of the manuscript.

참고문헌

  1. Alexeev V, Yoon K (2006) Distinctive role of the cKit receptor tyrosine kinase signaling in mammalian melanocytes. J Invest Dermatol 126:1102-1110. https://doi.org/10.1038/sj.jid.5700125
  2. Amar SK, Srivastav AK, Dubey D, Chopra D, Singh J, Mujtaba SF (2019) Sunscreen-induced expression and identification of photosensitive marker proteins in human keratinocytes under UV radiation. Toxicol Ind Health 35:457-465. https://doi.org/10.1177/0748233719862128
  3. Arenas-Mena C, Cameron AR, Davidson EH (2000) Spatial expression of Hox cluster genes in the ontogeny of a sea urchin. Development 127:4631-4643. https://doi.org/10.1242/dev.127.21.4631
  4. Calestani C, Wessel GM (2018) These colors don't run: Regulation of pigment-biosynthesis in echinoderms. In: Kloc M, Kubiak JZ (eds), Marine Organisms as Model Systems in Biology and Medicine. Results and Problems in Cell Differentiation. Vol. 65. Springer, Cham, Switzerland, pp 515-525.
  5. Chen Y, Gao F (2007) The effects of temperature, salinity and light cycle on the growth and behavior of Apostichopus japonicus. J Fish China 315:687-691.
  6. Dong G, Dong S, Tian X, Wang F (2011) Effects of photoperiod on daily activity rhythm of juvenile sea cucumber, Apostichopus japonicus (Selenka). Chin J Oceanology Limnol 29:1015-1022. https://doi.org/10.1007/s00343-011-0204-6
  7. Dong G, Dong S, Wang F, Tian X (2010) Effects of light intensity on daily activity rhythm of juvenile sea cucumber, Apostichopus japonicus (Selenka). Aquac Res 41:1640-1647. https://doi.org/10.1111/j.1365-2109.2010.02534.x
  8. Hu MY, Li Q (2009) Comparative growth and heterosis of hybrids of sea cucumber (Stichopus japonicus) between Chinese and Japanese populations. J Ocean Univ China 39:375-380.
  9. Jiang S, Dong S, Gao Q, Wang F, Tian X (2013) Comparative study on nutrient composition and growth of green and red sea cucumber, Apostichopus japonicus (Selenka, 1867), under the same culture conditions. Aquac Res 44:317-320. https://doi.org/10.1111/j.1365-2109.2011.03033.x
  10. Jo J, Oh J, Lee HG, Hong HH, Lee SG, Cheon S, Kern EMA, Jin S, Cho SJ, Park JK, Park C (2017) Draft genome of the sea cucumber Apostichopus japonicus and genetic polymorphism among color variants. GigaScience 6:giw006.
  11. Kang JH, Yu KH, Park JY, An CM, Jun JC, Lee SJ (2011) Allele-specific PCR genotyping of the HSP70 gene polymorphism discriminating the green and red color variants sea cucumber (Apostichopus japonicus). J Genet Genom 38:351-355. https://doi.org/10.1016/j.jgg.2011.06.002
  12. Kan-No M, Kijima A (2003) Genetic differentiation among three color variants of Japanese sea cucumber Stichopus japonicus. Fish Sci 69:806-812. https://doi.org/10.1046/j.1444-2906.2003.00690.x
  13. Li L, Zhang Y, Dong S, Wang F, Gao Q (2019) Effects of light intensity on larval development and juvenile growth of sea cucumber Apostichopus japonicus. Aquac Res 50:2333-2340. https://doi.org/10.1111/are.14113
  14. Liu J (2015) Chapter 5 - Spatial distribution, population structures, management, and conservation. In: Yang HS, Hamel JF, Mercier A (eds), Developments in Aquaculture and Fisheries Science. Vol. 39. Academic Press, Amsterdam, Netherlands, pp 77-86.
  15. Luo D, Chen H, Searles G, Jimbow K (1995) Coordinated mRNA expression of c-Kit with tyrosinase and TRP-1 in melanin pigmentation of normal and malignant human melanocytes and transient activation of tyrosinase by Kit/SCF-R. Melanoma Res 5:303-309. https://doi.org/10.1097/00008390-199510000-00002
  16. Maeng S, Kim GJ, Choi EJ, Yang HO, Lee DS, Sohn YC (2012) 9-Cis-retinoic acid induces growth inhibition in retinoid-sensitive breast cancer and sea urchin embryonic cells via retinoid X receptor α and replication factor C3. Mol Endocrinol 26:1821-1835. https://doi.org/10.1210/me.2012-1104
  17. Maeng S, Yoon SW, Kim EJ, Nam YK, Sohn YC (2019) Transcriptional activity of an estrogen receptor β subtype in the medaka Oryzias dancena. Dev Reprod 23:333-344. https://doi.org/10.12717/DR.2019.23.4.333
  18. McCauley BS, Wright EP, Exner C, Kitazawa C, Hinman VF (2012) Development of an embryonic skeletogenic mesenchyme lineage in a sea cucumber reveals the trajectory of change for the evolution of novel structures in echinoderms. EvoDevo 3:17.
  19. Menton DN, Eisen AZ (1970) The structure of the integument of the sea cucumber, Thyone briareus. J Morphol 131:17-35. https://doi.org/10.1002/jmor.1051310103
  20. Ministry of Oceans and Fisheries [MOF] (2004) Aquaculture of sea cucumber. J Fish Technol 15:1-45.
  21. Park YJ (2006) Development of culture technique of Sea cucumber, Stichopus japonicus. Report of National Fisheries Research, Busan, Korea, pp 1-151.
  22. Ru X, Zhang L, Li X, Liu S, Yang H (2019) Development strategies for the sea cucumber industry in China. J Oceanol Limnol 37:300-312. https://doi.org/10.1007/s00343-019-7344-5
  23. Schepsky A, Bruser K, Gunnarsson GJ, Goodall J, Hallsson JH, Goding CR, Steingrimsson E, Hecht A (2006) The microphthalmia-associated transcription factor Mitf interacts with β-catenin to determine target gene expression. Mol Cell Biol 26:8914-8927. https://doi.org/10.1128/MCB.02299-05
  24. Sun XJ, Li Q, Kon LF (2010) Comparative mitochondrial genomics within sea cucumber (Apostichopus japonicus): Provide new insights into relationships among color variants. Aquaculture 309:280-285. https://doi.org/10.1016/j.aquaculture.2010.08.001
  25. Vibert L, Aquino G, Gehring I, Subkankulova T, Schilling TF, Rocco A, Kelsh RN (2017) An ongoing role for Wnt signaling in differentiating melanocytes in vivo. Pigment Cell Melanoma Res 30:219-232. https://doi.org/10.1111/pcmr.12568
  26. Wang Y, Viennet C, Robin S, Berthon JY, He L, Humbert P (2017) Precise role of dermal fibroblasts on melanocyte pigmentation. J Dermatol Sci 88:159-166. https://doi.org/10.1016/j.jdermsci.2017.06.018
  27. Xing L, Sun L, Liu S, Li X, Zhang L, Yang H (2017) IBT-based quantitative proteomics identifies potential regulatory proteins involved in pigmentation of purple sea cucumber, Apostichopus japonicus. Comp Biochem Physiol Part D Genomics Proteomics 23:17-26. https://doi.org/10.1016/j.cbd.2017.05.004
  28. Xing L, Sun L, Liu S, Li X, Zhang L, Yang H (2018) De Novo assembly and comparative transcriptome analyses of purple and green morphs of Apostichopus japonicus during body wall pigmentation process. Comp Biochem Physiol Part D Genomics Proteomics 28:151-161. https://doi.org/10.1016/j.cbd.2018.09.001
  29. Xing L, Sun L, Liu S, Zhang L, Sun J, Yang H (2021) Metabolomic analysis of white, green and purple morphs of sea cucumber Apostichopus japonicus during body color pigmentation process. Comp Biochem Physiol D Genomics Proteomics 39:100827.
  30. Zhang S, Chen Y, Sun M (2006) Behavior characteristics of Apostichopus japonicus and attractive effects of artificial reef models under different light intensities. J Fish Sci China 13:20-27.
  31. Zhou W, Wang ZS, Wang SH (1999) Observations on action of young sea cucumber, Apostichopus japonicus. Fish Sci 6:17-19.
  32. Zhou Y, Song KY, Giubellino A (2019) The role of MET in melanoma and melanocytic lesions. Am J Pathol 189:2138-2148. https://doi.org/10.1016/j.ajpath.2019.08.002