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A STUDY OF DIFFERENTIAL IDENTITIES ON

σ-PRIME RINGS

Adnan Abbasi, Md. Arshad Madni, and Muzibur Rahman Mozumder

Abstract. Let R be a σ-prime ring with involution σ. The main

objective of this paper is to describe the structure of the σ-prime ring R
with involution σ satisfying certain differential identities involving three

derivations ψ1, ψ2 and ψ3 such that ψ1[t1, σ(t1)] + [ψ2(t1), ψ2(σ(t1))] +

[ψ3(t1), σ(t1)] ∈ JZ for all t1 ∈ R. Further, some other related results
have also been discussed.

1. Introduction

Throughout this paper, R will be used to describe an associative ring, and
JZ is centre of ring R. For any t1, t2 ∈ R, the notation [t1, t2] illustrates the
commutator t1t2 − t2t1, and t1 ◦ t2 illustrates the anti-commutator t1t2 + t2t1.
R is called 2-torsion free if 2t1 = 0 implies t1 = 0. We use this basic identities
[t1t2, t3] = t1[t2, t3]+[t1, t3]t2 and [t1, t2t3] = [t1, t2]t3+t2[t1, t3] for all t1, t2, t3 ∈
R as and when required. Recall that an involution is an anti-automorphism of
order 2. Throughout, (R, σ) means a ring with involution σ. A ring (R, σ) is
called σ-prime if aRb = aRσ(b) = (0) or σ(a)Rb = aRb = (0) implies a = 0
or b = 0. Every (R, σ) prime ring is a σ-prime ring but converse is not true in
general. Let S = R ×R0, where R0 is the opposite ring of R. The mapping
σ on S as σ(t1, t2) = (t2, t1). Thus S is a σ-prime ring but S is not a prime
ring. “An element t1 in (R, σ) is said to be hermitian if σ(t1) = t1 and skew-
hermitian if σ(t1) = −(t1)”. Let JH be the set of hermitian elements and JS be
the set of skew-hermitian elements of R. If char(R) ̸= 2, then every t1 ∈ R can
be uniquely expressed as 2t1 = h+ k, where h ∈ JH and k ∈ JS . If JZ ⊆ JH ,
then σ is said to be first kind and it is called second kind if JS ∩ JZ ̸= {0}.
Any t1 ∈ R is called normal if it commutes with its image under involution σ,
and if every elements of R are normal, then R is called a normal ring (see [6]).

A mapping ψ on R is termed as derivation on R if ψ(t1+ t2) = ψ(t1)+ψ(t2)
and ψ(t1t2) = ψ(t1)t2 + t1ψ(t2) for all t1, t2 ∈ R. An additive map g : R → R
is said to be a generalized derivation associated with a derivation d : R → R
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if g(t1t2) = g(t1)t2 + t1d(t2) holds for all t1, t2 ∈ R, as an special case if d = 0,
then g becomes left centralizer on R. A map f : R → R is called centralizing
on R if [f(t1), t1] ∈ JZ holds for all t1 ∈ R. In particular, if [f(t1), t1] = 0
holds for all t1 ∈ R, then f is said to be commuting. The narrative of cen-
tralising and commuting maps dates back to 1955, when Divinsky proved that
if a simple artinian ring has commuting non-trivial automorphisms, then it is
commutative. After few years, Posner [14] established that the presence of a
nonzero centralizing derivation on a prime ring implies commutativity of rings.
The study of centralizing (resp. commuting) derivations and various generaliza-
tions of concept of centralizing (resp. commuting) maps are the main concepts
emerging directly from Posner’s result, with many applications in various areas.
Recently, a number of algebraists demonstrated the commutativity theorem for
prime and semi-prime rings with or without involution, accepting identities on
automorphism, derivations, left centralizers and generalized derivations (see
[1, 2, 4, 5, 7–9,13]).

Very recently, Ali and Dar [2] start the study of σ-centralizing derivation in
prime rings with involution and proved σ-version of classical results of Posner
[14], and they proved that “Let R be a prime ring with involution σ such that
char(R) ̸= 2. Let Ψ be a nonzero derivation of R such that [ψ(x), σ(x)] ∈ JZ
for all x ∈ R and ψ(JS ∩ JZ) ̸= {0}. Then R is commutative”. Further, this
result was extended by Najjar et al. [13] for the second kind involution instead
of condition ψ(JS ∩JZ) ̸= {0}. Recently Alahmadi et al. [1] generalized above
result for generalized derivation and they proved that “Let R be a prime ring
with involution σ of the second kind such that char(R) ̸= 2. If R admits
a nonzero generalized derivation F associated with a derivation d such that
[F (t), σ(t)] ∈ JZ for all t ∈ R, then R is commutative”. In this direction a
lot of work have been done in the recent years (see for reference [10–12] where
further references can be found). In [3], Ali et al. proved that “Let R be a
prime ring with involution σ of the second kind such that char(R) ̸= 2. Let
δ1 and δ2 be derivations of R such that at least one of them is nonzero and
satisfying the identity [δ1(t), δ1(σ(t))] + δ2(t ◦ σ(t)) = 0 for all t ∈ R. Then R
is a commutative integral domain”. Our motivation for this manuscript comes
from the types of identities studied by Ali et al. in [3] and motivated by these
types of identities, here we study commutativity of σ-prime rings with the help
of identities involving three different derivation taken together in our results
and some other results are discussed under the same σ-prime ring. To prove
our main results, we need some lemmas as well as some facts, so we start with
the proof of these lemmas and facts.

2. Main results

Lemma 2.1. Let R be a σ-prime ring and ψ be a derivation on R. For some
a ∈ R, aψ(t1) = 0 for all t1 ∈ R and σ, ψ commute then either a = 0 or
ψ = 0.
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Proof. Let aψ(t1) = 0 for all t1 ∈ R. Replacing t1 by t1t2, then 0 = aψ(t1t2) =
aψ(t1)t2 + at1ψ(t2) = at1ψ(t2) for all t1, t2 ∈ R. Now replacing t2 by σ(t2)
we have at1ψ(t2) = 0 = at1ψ(σ(t2)) for all t1, t2 ∈ R since σ and ψ commute
with each other. So we have aRψ(t2) = aRσ(ψ(t2)) = (0). By the definition
of σ-prime rings we have either a = 0 or ψ(t2) = 0 for all t2 ∈ R, which implies
ψ = 0. □

Lemma 2.2. Let b and ab be in centre of σ-prime ring R, and σ, ψ commute.
If b ̸= 0, then a ∈ JZ .

Proof. Since b, ab ∈ JZ , then 0 = [ab, r] = a[b, r]+ [a, r]b = [a, r]b for all a ∈ R,
then Ia(r)b = 0 so by Lemma 2.1, we have either b = 0 or Ia = 0, since b = 0
is not possible by given condition. Later case implies that a ∈ JZ . □

Lemma 2.3. Let R be a σ-prime ring of char(R) ̸= 2. Then R is 2-torsion
free.

Proof. Let, u ∈ R and 2u = 0 suggest, 2u(vw) = 0 for all v, w ∈ R and
uR(2w) = 0 for all w ∈ R. Since char(R) ̸= 2 and R ̸= (0) there exists
0 ̸= p ∈ R such that 2p ̸= 0, forces uR(2p) = (0) = uRσ(2p), by the definition
of σ-prime rings we have, either u = 0 or 2p = 0 second case is not possible by
the assumption and first case implies R is 2-torsion free. □

Lemma 2.4. In σ-prime ring, JZ∩JH and JZ∩JS are free from zero-divisor.

Proof. Let a, b ∈ JZ ∩ JH such that ab = 0, which implies abu = 0 for all
u ∈ R. This provides us aRb = (0) = aRσ(b). So by definition of σ-prime
ring, we have either a = 0 or b = 0. Similarly we can show that for JZ∩JS . □

Lemma 2.5. Let R be a σ-prime ring with involution σ, which is of second
kind, with char(R) ̸= 2. If t21 ∈ JZ for all t1 ∈ R, then R is commutative.

Proof. t21 ∈ JZ for all t1 ∈ R, after linearizing we get, t1t2 + t2t1 ∈ JZ for all
t1, t2 ∈ R. Since σ is of second kind, there exists 0 ̸= c ∈ JZ∩JS . Replacing t2
by c and using char(R) ̸= 2, we have t1c ∈ JZ for all t1 ∈ R [t1c, r] = 0 for all
r ∈ R, which implies [t1, r]c = 0. Now by using Lemma 2.2, we get [t1, r] = 0
for all t1, r ∈ R, implies R is commutative. □

Fact 2.6. Let R be a 2-torsion free σ-prime ring with involution σ which is of
second kind. Then R is commutative if R is normal.

Proof. Since R is normal, i.e., hk = kh where h ∈ JH and k ∈ JS , respectively.
Taking any t1 ∈ R then t1 − σ(t1) ∈ JS .

(2.1) h(t1 − σ(t1)) = (t1 − σ(t1))h for all t1 ∈ R and h ∈ JH .

Taking s ∈ JS ∩ JZ , then s(t1 + σ(t1)) ∈ JS for all t1 ∈ R, so by normality of
R we have hs(t1 + σ(t1)) = s(t1 + σ(t1))h for all t1 ∈ R and h ∈ JH .

(2.2) s{h(t1 + σ(t1))− (t1 + σ(t1))h} = 0 for all t1 ∈ R and for all h ∈ JH .
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So by Lemma 2.4, we have either s = 0 or h(t1 + σ(t1)) = (t1 + σ(t1))h. First
case is not possible since σ is of second kind and later case together with (2.1)
gives ht1 = t1h for all t1 ∈ R and h ∈ JH . Substituting t2 for t1, we obtain

(2.3) ht2 = t2h for all t2 ∈ R and h ∈ JH .

Replacing h by t1 + σ(t1) in (2.3), we get

(2.4) {t1 + σ(t1)}t2 = t2{t1 + σ(t1)} for all t1, t2 ∈ R.
Now we take s ∈ JS ∩ JZ , then s(t1 − σ(t1)) ∈ JH and using (2.3) we have
s{(t1 − σ(t1))t2 − t2(t1 − σ(t1))} = 0 for all t1 ∈ R. By Lemma 2.4, we have
either s = 0 or (t1 − σ(t1))t2 = t2(t1 − σ(t1)). The first case is not possible
since σ is of second kind and the later case implies

(2.5) (t1 − σ(t1))t2 = t2(t1 − σ(t1)) for all t1, t2 ∈ R.

Using (2.4) together with (2.5), we get t1t2 = t2t1 for all t1, t2 ∈ R, which
implies the commutativity of R. □

Fact 2.7. Let R be a σ-prime ring with involution σ which is of second kind.
Then σ is centralizing if and only if R is commutative.

Proof. Let

(2.6) [t1, σ(t1)] ∈ JZ for all t1 ∈ R.

Replacing t1 by t1 + t2 in (2.6), we get

(2.7) [t1, σ(t2)] + [t2, σ(t1)] ∈ JZ for all t1, t2 ∈ R,

(2.8) [[t1, σ(t2)], t1] + [[t2, σ(t1)], t1] = 0 for all t1, t2 ∈ R.
Displacing t2 by t2t1 in (2.8), we get

[[t1, t2], t1]t1 + σ(t1)[[σ(t2), σ(t1)], t1]

+ [σ(t1), t1][σ(t2), σ(t1)] = 0 for all t1, t2 ∈ R.(2.9)

Using (2.8) in (2.9), we get

[[t1, t2], t1]t1 − σ(t1)[[t2, t1], t1]

+ [σ(t1), t1][σ(t2), σ(t1)] = 0 for all t1, t2 ∈ R.(2.10)

Taking t2t1 for t2 in above equation, we attain

[[t1, t2], t1]t
2
1 − σ(t1)[[t2, t1], t1]t1

+ [σ(t1), t1]σ(t1)[σ(t2), σ(t1)] = 0 for all t1, t2 ∈ R.(2.11)

Using (2.10) in (2.11) and replacing t1 by σ(t1) and t2 by σ(t2), we have

(2.12) [t1, σ(t1)]{t1[t2, t1]− [t2, t1]σ(t1)} = 0 for all t1, t2 ∈ R.
Exchanging t2 by t2t1 in (2.12), we capture

(2.13) [t1, σ(t1)]{t1[t2, t1]t1 − [t2, t1]t1σ(t1)} = 0 for all t1, t2 ∈ R.
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Invoking (2.12) in (2.13), we obtain

(2.14) [t1, σ(t1)][t2, t1]{−t1σ(t1) + σ(t1)t1} = 0 for all t1, t2 ∈ R.

Applying the hypothesis σ is centralizing

(2.15) [t1, σ(t1)]
2R[t2, t1] = 0 for all t1, t2 ∈ R.

Replacing t1 by σ(t1) and t2 by σ(t2) in (2.15), we get

(2.16) [t1, σ(t1)]
2R[t2, t1] = 0 = [t1, σ(t1)]

2R σ{[t2, t1]} for all t1, t2 ∈ R.

So by definition of σ-prime ring, we get

(2.17) [t1, σ(t1)]
2 = 0 or [t1, t2] = 0 for all t1, t2 ∈ R.

Later case suggests that R is commutative, by first case we have

(2.18) [t1, σ(t1)]
2 = 0 for all t1 ∈ R.

Since [t1, σ(t1)] ∈ JZ ∩ JH and JZ ∩ JS is free from zero-divisor in σ-prime
ring, we get

(2.19) [t1, σ(t1)] = 0 for all t1 ∈ R.

Because R is normal and by Fact 2.6, R is commutative. Converse part can
be directly hold. □

Fact 2.8. Let R be a σ-prime ring with involution σ of second kind with
char(R) ̸= 2. Then t1◦σ(t1) ∈ JZ for all t1 ∈ R if and only ifR is commutative.

Proof. By the given condition,

(2.20) t1 ◦ σ(t1) ∈ JZ for all t1 ∈ R.

Replacing t1 by t1 + t2 in the last relation

(2.21) t1 ◦ σ(t2) + t2 ◦ σ(t1) ∈ JZ for all t1, t2 ∈ R.

Last relation further implies

(2.22) [t1 ◦ σ(t2), r] + [t2 ◦ σ(t1), r] = 0 for all t1, t2, r ∈ R.

Replacing t2 by σ(t2) in (2.22), we found

(2.23) [t1 ◦ t2, r] + [σ(t2) ◦ σ(t1), r] = 0 for all t1, t2, r ∈ R.

Substituting t2 in place of t1 in (2.23), we get

(2.24) [t21, r] + [σ(t1)
2, r] = 0 for all t1, r ∈ R.

Consider t2 ∈ JZ \ {0} and taking t1
2 for t1 in (2.23), we have

(2.25) [t21, r]t2 + [σ(t1)
2, r]σ(t2) = 0 for all t1, r ∈ R.

Making use of (2.24) in (2.25), we obtain

(2.26) [t21, r]{t2 − σ(t2)} = 0 for all t1, t2, r ∈ R,
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{t2 − σ(t2)} ∈ JS ∩ JZ . By using Lemma 2.4, we have either [t21, r] = 0 or
{t2 − σ(t2)} = 0. The later case is not possible since σ is of second kind. The
first case implies

(2.27) [t21, r] = 0 for all t1, r ∈ R.
So, t21 ∈ J (R) for all t1 ∈ R. Using Lemma 2.5, R is commutative. □

Fact 2.9. Let R be a σ-prime ring with char(R) ̸= 2, and ψ ̸= 0 is central-
izing derivation on R, and σ and ψ commute with each other. Then R is
commutative.

Proof. By the given condition,

(2.28) [t1, ψ(t1)] ∈ JZ for all t1 ∈ R.
Taking t1 + t2 in place of t1, using (2.28), we obtain

(2.29) [t1, ψ(t2)] + [t2, ψ(t1)] ∈ JZ for all t1, t2 ∈ R.
Replacing t21 in place of t2 in above equation, we have

(2.30) [t1, ψ(t
2
1)] + [t21, ψ(t1)] ∈ JZ for all t1 ∈ R.

By the definition of derivation, we have

(2.31) [t1, ψ(t
2
1)] = [t21, ψ(t1)] for all t1 ∈ R.

Invoking (2.30) in (2.31) and applying char(R) ̸= 2, we have

(2.32) [t21, ψ(t1)] ∈ JZ for all t1 ∈ R,

(2.33) [[t21, ψ(t1)], r] = 0 for all t1, r ∈ R.
Using (2.28) and char(R) ̸= 2, we obtain

(2.34) [t1, ψ(t1)][t1, r] = 0 for all t1, r ∈ R.
Exchanging r by ru where u ∈ R and using (2.34), we get

(2.35) [t1, ψ(t1)] R [t1, u] = 0 for all t1, u ∈ R.
Since u is an arbitrary elements of R, we take ψ(t1) in place of u

(2.36) [t1, ψ(t1)] R [t1, ψ(t1)] = 0 for all t1 ∈ R.
Every σ-prime ring is a semiprime ring. Now by semiprimeness of R, we have
[t1, ψ(t1)] = 0 for all t1 ∈ R. On linearization we obtain

(2.37) [t1, ψ(t2)] + [t2, ψ(t1)] = 0 for all t1, t2 ∈ R.
Further implies

(2.38) [t1, ψ(t2)] = [ψ(t1), t2] for all t1, t2 ∈ R.
Now define ψc(t1) = [t1, c] for all t1 ∈ R is called an inner derivation, then
(2.38) implies

(2.39) ψψ(t2)(t1) = ψt2 ◦ ψ(t1),
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where ψ is a derivation and ψt2 is an inner derivation.
Posner’s first theorem for σ-prime rings states that iterate of derivation is a

derivation if at least one of them is 0 (see [4, Theorem 3.1]), so we have either
ψt2 = 0 or ψ = 0. The later case is not possible by our assumption. The first
case implies t2 ∈ JZ for all t2 ∈ R. Hence R is commutative. □

Theorem 2.10. Let R be a σ-prime ring with involution σ such that char(R) ̸=
2, let ψ1, ψ2 and ψ3 be derivations on R such that at least one of them is nonzero
satisfying the identity ψ1[t1, σ(t1)] + [ψ2(t1), ψ2(σ(t1))] + [ψ3(t1), σ(t1)] ∈ JZ
for all t1 ∈ R. If ψ1, ψ2 and ψ3 commute with σ, then R is commutative.

Proof. By given hypothesis, ψ1, ψ2 and ψ3 are derivations on R such that

(2.40) ψ1[t1, σ(t1)] + [ψ2(t1), ψ2(σ(t1))] + [ψ3(t1), σ(t1)] ∈ JZ for all t1 ∈ R.

We examine and split up the proof in the following cases.
Case (i) : If ψ1 = 0, then we consider that

(2.41) [ψ2(t1), ψ2(σ(t1))] + [ψ3(t1), σ(t1)] ∈ JZ for all t1 ∈ R.

Substituting σ(t1) for t1 in (2.41), we obtain

(2.42) −[ψ2(t1), ψ2(σ(t1))] + [ψ3(σ(t1)), t1] ∈ JZ for all t1 ∈ R.

By using (2.41) and (2.42), we achieve

(2.43) [ψ3(σ(t1)), t1] + [ψ3(t1), σ(t1)] ∈ JZ for all t1 ∈ R.

Linearizing (2.43), we obtain

[ψ3(t1), σ(t2)] + [ψ3(t2), σ(t1)]

+ [ψ(σ(t1)), t2] + [ψ(σ(t2)), t1] ∈ JZ for all t1, t2 ∈ R.(2.44)

Replacing t2 by t2h where 0 ̸= h ∈ JZ ∩ JH gives

h{[ψ3(t1), σ(t2)] + [ψ3(t2), σ(t1)] + [ψ(σ(t1)), t2] + [ψ(σ(t2)), t1]}
+ ψ3(h){[t2, σ(t1)] + [σ(t2), t1]} ∈ JZ for all t1, t2 ∈ R.(2.45)

Using (2.44) in (2.45), we acquire

(2.46) ψ3(h){[t2, σ(t1)] + [σ(t2), t1]} ∈ JZ for all t1, t2 ∈ R.

Above relation further implies that

(2.47) ψ3(h)[[t2, σ(t1)] + [σ(t2), t1], r] = 0 for all t1, t2, r ∈ R.

Since ψ3 and σ commute with each other, ψ3(h) ∈ JZ ∩ JH . Then by Lemma
2.4, we have either [[t2, σ(t1)] + [σ(t2), t1], r] = 0 or ψ3(h) = 0. Later case is
not possible since σ is of second kind. The first case implies

(2.48) [t2, σ(t1)] + [σ(t2), t1]} ∈ JZ for all t1, t2 ∈ R.

Changing t2 by t2s where 0 ̸= s ∈ JZ ∩ JS , we receive

(2.49) s{[t2, σ(t1)]− [σ(t2), t1]} ∈ JZ for all t1, t2 ∈ R.
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By Lemma 2.2, we gain

(2.50) [t2, σ(t1)]− [σ(t2), t1] ∈ JZ for all t1, t2 ∈ R.
By using (2.48) and (2.50), we achieve

(2.51) [t2, σ(t1)] ∈ JZ for all t1, t2 ∈ R.
Taking t2 for t1 in (2.51), we have

(2.52) [t1, σ(t2)] ∈ JZ for all t1, t2 ∈ R.
By Fact 2.7, R is commutative.
Case (ii) : If ψ2 = 0, then we have

(2.53) ψ1[t1, σ(t1)] + [ψ3(t1), σ(t1)] ∈ JZ for all t1 ∈ R.
Changing t1 by σ(t1) in the last equation, we obtain

(2.54) −ψ1[t1, σ(t1)] + [ψ3(σ(t1)), t1] ∈ JZ for all t1 ∈ R.
Invoking (2.53) in (2.54), we find

(2.55) [ψ3(t1), σ(t1)] + [ψ3(σ(t1)), t1] ∈ JZ for all t1 ∈ R.
Equation (2.55) is same as (2.43). So by same argument R is commutative.
Case (iii) : If ψ3 = 0, then we have

(2.56) ψ1[t1, σ(t1)] + [ψ2(t1), ψ2(σ(t1))] ∈ JZ for all t1 ∈ R.
Linearizing above,

ψ1[t1, σ(t2)] + ψ1[t2, σ(t1)]

+ [ψ2(t1), ψ2(σ(t2))] + [ψ2(t2), ψ2(σ(t1))] ∈ JZ for all t1, t2 ∈ R.(2.57)

Taking t2h in place of t2 where 0 ̸= h ∈ JZ ∩ JH and using (2.57), we get

ψ1(h){[t1, σ(t2)] + [t2, σ(t1)]}
+ ψ2(h){[ψ2(t1), σ(t2)] + [t2, ψ2(σ(t1))]} ∈ JZ for all t1, t2 ∈ R.(2.58)

Substitute t2s by t2 where 0 ̸= s ∈ JZ ∩ JS , by using Lemma 2.2, we obtain

ψ1(h){−[t1, σ(t2)] + [t2, σ(t1)]}
+ ψ2(h){−[ψ2(t1), σ(t2)] + [t2, ψ2(σ(t1))]} ∈ JZ for all t1, t2 ∈ R.(2.59)

Equation (2.58) together with (2.59) gives us

ψ1(h){[t2, σ(t1)]}+ ψ2(h){[t2, ψ2(σ(t1))]} ∈ JZ for all t1, t2 ∈ R.(2.60)

Displacing t1 by σ(t1) in above relation, we find

ψ1(h){[t2, t1]}+ ψ2(h){[t2, ψ2(t1)]} ∈ JZ for all t1, t2 ∈ R.(2.61)

In particular taking t2 = t1 we gain

(2.62) ψ2(h)[t1, ψ2(t1)] ∈ JZ for all t1 ∈ R.
Last relation further implies

(2.63) ψ2(h) [[t1, ψ2(t1)], r] = 0 for all t1, r ∈ R.
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Since σ commutes with ψ2, ψ2(h) ∈ JZ ∩ JH . So by Lemma 2.4, we have
either ψ2(h) = 0 or [[t1, ψ2(t1)], r] = 0. First case is not possible because σ is
of second kind. The later case implies

(2.64) [t1, ψ2(t1)] ∈ JZ for all t1 ∈ R.
By Fact 2.9, R is commutative.
Case (iv) : If ψ1 = ψ2 = 0 and ψ3 ̸= 0, we have [ψ3(t1), σ(t1)] ∈ JZ for all
t1 ∈ R. Change t1 by t1 + t2 in the last equation

(2.65) [ψ3(t1), σ(t2)] + [ψ3(t2), σ(t1)] ∈ JZ for all t1, t2 ∈ R.
Changing t2 by t2h where 0 ̸= h ∈ JZ ∩ JH , we get

h{[ψ3(t1), σ(t2)] + [ψ3(t2), σ(t1)]}
+ ψ3(h){[t2, σ(t1)]} ∈ JZ for all t1, t2 ∈ R.(2.66)

Using (2.65) in (2.66) and Lemma 2.2, we obtain

(2.67) ψ3(h){[t2, σ(t1)]} ∈ JZ for all t1, t2 ∈ R,

(2.68) ψ3(h) [[t2, σ(t1)], r] = 0 for all t1, t2, r ∈ R.
Since σ commutes with ψ3, ψ3(h) ∈ JZ ∩JH . So by Lemma 2.4, we have either
ψ3(h) = 0 or [[t2, σ(t1)], r] = 0. First case is not possible because σ is of second
kind. The later case implies

(2.69) [t2, σ(t1)] ∈ JZ for all t1, t2 ∈ R.
In particular taking t2 = t1 in above equation, we obtain

(2.70) [t1, σ(t1)] ∈ JZ for all t1 ∈ R.
By Fact 2.7, R is commutative.
Case (v) : Suppose ψ2 = ψ3 = 0 and ψ1 ̸= 0, we have ψ1[t1, σ(t1)] ∈ JZ for all
t1 ∈ R. Changing t1 by t1 + t2 in the last relation, we achieve

(2.71) ψ1[t1, σ(t2)] + ψ1[t2, σ(t1)] ∈ JZ for all t1, t2 ∈ R.
Replacing t2 by t2h where 0 ̸= h ∈ JZ ∩ JH , we get

h{ψ1[t1, σ(t2)] + ψ1[t2, σ(t1)]}
+ ψ1(h){[t1, σ(t2)] + [t2, σ(t1)]} ∈ JZ for all t1, t2 ∈ R.(2.72)

Using (2.71) in (2.72) and Lemma 2.2, we obtain

(2.73) ψ1(h){[t1, σ(t2)] + [t2, σ(t1)]} ∈ JZ for all t1, t2 ∈ R,

(2.74) ψ1(h)[[t1, σ(t2)] + [t2, σ(t1)], r] = 0 for all t1, t2, r ∈ R.
Since σ commutes with ψ1, ψ1(h) ∈ JZ ∩JH . So by Lemma 2.4, we have either
ψ1(h) = 0 or [[t1, σ(t2)] + [t2, σ(t1)], r] = 0. First case is not possible because
σ is of second kind. The later case implies

(2.75) [t1, σ(t2)] + [t2, σ(t1)]} ∈ JZ for all t1, t2 ∈ R.
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In particular taking t2 = t1 and using char(R) ̸= 2, we gain

(2.76) [t1, σ(t1)] ∈ JZ for all t1 ∈ R.
By Fact 2.7, R is commutative.
Case (vi) : Let ψ1 = ψ3 = 0 and ψ2 ̸= 0. Then we find

(2.77) [ψ2(t1), ψ2(σ(t1))] ∈ JZ for all t1 ∈ R.
Replacing t1 by t1 + t2 in last relation, we achieve

(2.78) [ψ2(t1), ψ2(σ(t2))] + [ψ2(t2), ψ2(σ(t1))] ∈ JZ for all t1, t2 ∈ R.
Displacing t2 by t2h, where 0 ̸= h ∈ JZ ∩ JH , we gain

h{[ψ2(t1), ψ2(σ(t2))] + [ψ2(t2), ψ2(σ(t1))]}
+ ψ2(h){[ψ2(t1), σ(t2)] + [t2, ψ2(σ(t1))]} ∈ JZ for all t1, t2 ∈ R.(2.79)

Using equation (2.78) in (2.79) and by Lemma 2.2, we obtain

(2.80) ψ2(h){[ψ2(t1), σ(t2)] + [t2, ψ2(σ(t1))]} ∈ JZ for all t1, t2 ∈ R,

(2.81) ψ2(h)[[ψ2(t1), σ(t2)] + [t2, ψ2(σ(t1))], r] = 0 for all t1, t2 ∈ R.
Since σ commutes with ψ2, ψ2(h) ∈ JZ ∩JH . So by Lemma 2.4, we have either
ψ2(h) = 0 or [[ψ2(t1), σ(t2)] + [t2, ψ2(σ(t1))], r] = 0. First case is not possible
because σ is of second kind. The later case implies

(2.82) [ψ2(t1), σ(t2)] + [t2, ψ2(σ(t1))] ∈ JZ for all t1, t2 ∈ R.
Replacing t2 by t2s, where 0 ̸= s ∈ JZ ∩ JS , and by Lemma 2.2, we find

(2.83) −[ψ2(t1), σ(t2)] + [t2, ψ2(σ(t1))] ∈ JZ for all t1, t2 ∈ R.
By (2.82) and (2.83) and char(R) ̸= 2, we have

(2.84) [t2, ψ2(σ(t1))] ∈ JZ for all t1, t2 ∈ R.
Changing t1 by σ(t1) in the last equation, we get

(2.85) [t2, ψ2(t1))] ∈ JZ for all t1, t2 ∈ R.
In particular taking t2 = t1 in above, we achieve

(2.86) [t1, ψ2(t1)] ∈ JZ for all t1 ∈ R.
By Fact 2.9, R is commutative.
Case (vii) : If ψ1 ̸= 0, ψ2 ̸= 0 and ψ3 ̸= 0, then we have

(2.87) ψ1[t1, σ(t1)] + [ψ2(t1), ψ2(σ(t1))] + [ψ3(t1), σ(t1)] ∈ JZ for all t1 ∈ R.
Replacing t1 by σ(t1) in above, we obtain

(2.88) −ψ1[t1, σ(t1)]− [ψ2(t1), ψ2(σ(t1))]+[ψ3(σ(t1)), t1] ∈ JZ for all t1 ∈ R.
Using equation (2.87) and (2.87), we find

(2.89) [ψ3(t1), σ(t1)] + [ψ3(σ(t1)), t1] ∈ JZ for all t1 ∈ R.
Above equation is same as (2.43). So by same argument R is commutative. □
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Theorem 2.11. Let R be a σ-prime ring with involution σ of the second kind
such that char(R) ̸= 2. Let ψ be derivation on R which commutes with σ.
Then the following are equivalent:

(1) ψ(t1) ◦ ψ(σ(t1))− t1 ◦ σ(t1) ∈ JZ for all t1 ∈ R;
(2) ψ(t1) ◦ ψ(σ(t1)) + t1 ◦ σ(t1) ∈ JZ for all t1 ∈ R;
(3) R is commutative.

Moreover, if ψ ̸= 0 and ψ(t1)◦ψ(σ(t1)) ∈ JZ for all t1 ∈ R, R is commutative.

Proof. If ψ = 0, then by Fact 2.8, R is commutative. Assume that ψ ̸= 0.
(1) ⇒ (3) By the given condition

(2.90) ψ(t1) ◦ ψ(σ(t1))− t1 ◦ σ(t1) ∈ JZ for all t1 ∈ R.

Replacing t1 by t1 + t2 in above

ψ(t1) ◦ ψ(σ(t2)) + ψ(t2) ◦ ψ(σ(t1))
− t1 ◦ σ(t2)− t2 ◦ σ(t1) ∈ JZ for all t1, t2 ∈ R.(2.91)

Taking t2h in place of t2 where 0 ̸= h ∈ JZ ∩ JH . By using (2.91), we get

(2.92) [ψ(t1) ◦ σ(t2) + t2 ◦ ψ(σ(t1)), r] ψ(h) = 0 for all t1, t2, r ∈ R.

Since σ commutes with ψ, ψ(h) ∈ JZ ∩ JH . So by Lemma 2.4, we have either
ψ(h) = 0 or [ψ(t1) ◦ σ(t2) + t2 ◦ ψ(σ(t1)), r] = 0. First case is not possible
because σ is of second kind. The later case implies

(2.93) ψ(t1) ◦ σ(t2) + t2 ◦ ψ(σ(t1)) ∈ JZ for all t1, t2 ∈ R.

Changing t2 by σ(t2), we gain

(2.94) ψ(t1) ◦ t2 + σ(t2) ◦ ψ(σ(t1)) ∈ JZ for all t1, t2 ∈ R.

Changing t2 by t2s, where 0 ̸= s ∈ JZ ∩ JS , by using Lemma 2.2, we have

(2.95) ψ(t1) ◦ t2 − σ(t2) ◦ ψ(σ(t1)) ∈ JZ for all t1, t2 ∈ R.

By using equation (2.94) in (2.95), we obtain

(2.96) ψ(t1) ◦ t2 ∈ JZ for all t1, t2 ∈ R.

Last relation further implies

(2.97) [ψ(t1) ◦ t2, r] = 0 for all t1, t2, r ∈ R.

Interchanging t2 by t2r and using (2.97), we obtain

(2.98) [t2[ψ(t1), r], r] = 0 for all t1, t2, r ∈ R.

Exchanging t2 by t2u and using above relation, we have

(2.99) [u, r]t2[ψ(t1), r] = 0 for all t1, t2, r, u ∈ R,

(2.100) [u, r] R [ψ(t1), r] = σ([u, r]) R [ψ(t1), r] = 0 for all t1, r, u ∈ R.
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By definition of σ-prime rings we have either [u, r] = 0 or [ψ(t1), r] = 0. The
first case implies commutativity of R. Later case implies

(2.101) [ψ(t1), r] = 0 for all t1, r ∈ R.
In particular taking r = t1

(2.102) [ψ(t1), t1] = 0 for all t1 ∈ R.
By Fact 2.9, R is commutative.

(2) ⇒ (3) We have by hypothesis.

(2.103) ψ(t1) ◦ ψ(σ(t1)) + t1 ◦ σ(t1) ∈ JZ for all t1 ∈ R.
Linearizing above

ψ(t1) ◦ ψ(σ(t2)) + ψ(t2) ◦ ψ(σ(t1))
+ t1 ◦ σ(t2) + t2 ◦ σ(t1) ∈ JZ for all t1, t2 ∈ R.(2.104)

Taking t2h in place of t2, where 0 ̸= h ∈ JZ ∩ JH , by using (2.104), we get

(2.105) [ψ(t1) ◦ σ(t2) + t2 ◦ ψ(σ(t1)), r] ψ(h) = 0 for all t1, t2, r ∈ R.
Last relation is same as (2.92). So by same argument R is commutative.

If ψ ̸= 0 and ψ(t1) ◦ ψ(σ(t1)) ∈ JZ for all t1 ∈ R. Changing t1 by t1 + t2,
we have

(2.106) ψ(t1) ◦ ψ(σ(t2)) + ψ(t2) ◦ ψ(σ(t1)) ∈ JZ for all t1, t2 ∈ R.
Changing t2 by t2h, where 0 ̸= h ∈ JZ ∩ JH , in the last relation, we have

(2.107) [ψ(t1) ◦ σ(t2) + t2 ◦ ψ(σ(t1)), r] ψ(h) = 0 for all t1, t2, r ∈ R.
Above equation is same as (2.92). So by same argument R is commutative.

(2) ⇒ (3) can be done easily by using the same steps of proof as we did in
(1) ⇒ (3) case. □

Theorem 2.12. Let R be a σ-prime ring with involution σ of the second kind
such that char(R) ̸= 2. Let ψ be a derivation on R which commutes with σ.
Then the following are equivalent:

(1) [ψ(t1), ψ(σ(t1))]− t1 ◦ σ(t1) ∈ JZ for all t1 ∈ R;
(2) [ψ(t1), ψ(σ(t1))] + t1 ◦ σ(t1) ∈ JZ for all t1 ∈ R;
(3) ψ(t1) ◦ ψ(σ(t1))− [t1, σ(t1)] ∈ JZ for all t1 ∈ R;
(4) ψ(t1) ◦ ψ(σ(t1)) + [t1, σ(t1)] ∈ JZ for all t1 ∈ R;
(5) R is commutative.

Proof. (1) ⇒ (5) By the given hypothesis

(2.108) [ψ(t1), ψ(σ(t1))]− t1 ◦ σ(t1) ∈ JZ for all t1 ∈ R.
Changing t1 by t1 + t2 in above equation

[ψ(t1), ψ(σ(t2))] + [ψ(t2), ψ(σ(t1))]

− t1 ◦ σ(t2)− t2 ◦ σ(t1)− ∈ JZ for all t1, t2 ∈ R.(2.109)
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Changing t2 by t2h where 0 ̸= h ∈ JZ ∩ JH and using (2.109), we achieve

(2.110) {[ψ(t1), σ(t2)] + [t2, ψ(σ(t1))]} ψ(h) ∈ JZ for all t1, t2 ∈ R,

(2.111) [[ψ(t1), σ(t2)] + [t2, ψ(σ(t1))], r] ψ(h) = 0 for all t1, t2 ∈ R.
Since σ commutes with ψ, ψ(h) ∈ JZ ∩ JH . So by Lemma 2.4, we have either
ψ(h) = 0 or [[ψ(t1), σ(t2)] + [t2, ψ(σ(t1))], r] = 0. First case is not possible
because σ is of second kind. The later case implies

(2.112) [ψ(t1), σ(t2)] + [t2, ψ(σ(t1))] ∈ JZ for all t1, t2 ∈ R.
Exchanging t2 by σ(t2) in (2.112), we get

(2.113) [ψ(t1), t2] + [σ(t2), ψ(σ(t1))] ∈ JZ for all t1, t2 ∈ R.
Changing t2 by t2s, where 0 ̸= s ∈ JZ ∩ JS , by using Lemma 2.2, we

(2.114) [ψ(t1), t2]− [σ(t2), ψ(σ(t1))] ∈ JZ for all t1, t2 ∈ R.
By using (2.113) and (2.114), we achieve

(2.115) [ψ(t1), t2] ∈ JZ for all t1, t2 ∈ R.
In particular taking t2 = t1, we have

(2.116) [ψ(t1), t1] ∈ JZ for all t1 ∈ R.
By Fact 2.9, R is commutative.

(2) ⇒ (5) By the given hypothesis

(2.117) [ψ(t1), ψ(σ(t1))] + t1 ◦ σ(t1) ∈ JZ for all t1 ∈ R.
Linearizing above

[ψ(t1), ψ(σ(t2))] + [ψ(t2), ψ(σ(t1))]

+ t1 ◦ σ(t2) + t2 ◦ σ(t1)+ ∈ JZ for all t1, t2 ∈ R.(2.118)

Changing t2 by t2h, where 0 ̸= h ∈ JZ ∩ JH , by using (2.118), we achieve

(2.119) {[ψ(t1), σ(t2)] + [t2, ψ(σ(t1))]} ψ(h) ∈ JZ for all t1, t2 ∈ R.
Above equation is similar to (2.110), so by same argument R is commutative.

(3) ⇒ (5) By the given hypothesis

(2.120) ψ(t1) ◦ ψ(σ(t1))− [t1, σ(t1)] ∈ JZ for all t1 ∈ R.
Changing t1 by σ(t1) in the last equation, we have

(2.121) ψ(t1) ◦ ψ(σ(t1)) + [t1, σ(t1)] ∈ JZ for all t1 ∈ R.
Using (2.120) in (2.121), we gain

(2.122) [t1, σ(t1)] ∈ JZ for all t1 ∈ R.
By Fact 2.7, R is commutative.

(4) ⇒ (5) By the given hypothesis

(2.123) ψ(t1) ◦ ψ(σ(t1)) + [t1, σ(t1)] ∈ JZ for all t1 ∈ R.



692 A. ABBASI, M. A. MADNI, AND M. R. MOZUMDER

Changing σ(t1) in the last equation, we have

(2.124) ψ(t1) ◦ ψ(σ(t1))− [t1, σ(t1)] ∈ JZ for all t1 ∈ R.

Using (2.123) in (2.124), we gain

(2.125) [t1, σ(t1)] ∈ JZ for all t1 ∈ R.

By Fact 2.7, R is commutative. □

Although it is commonly known that the centre of a prime ring is free of zero
divisor, but in σ-prime rings centre is not free from zero divisor. The following
example explains that the centre of a σ-prime ring is not free zero-divisor.

Example 2.13. Let us consider R =
{
[ a 0
0 b ]

∣∣∣a, b,∈ Z
}
, and define σ on R as

σ ([ a 0
0 b ]) = [ b 0

0 a ]. It is easy to verify that R is a σ-prime ring with involution
σ. For any non zero a, [ a 0

0 0 ] ∈ JZ(R), and for any non zero b, [ 0 0
0 b ] ∈ R,

[ a 0
0 0 ] [

0 0
0 b ] = [ 0 0

0 0 ]. This shows that the centre of σ-prime ring is not free from
zero-divisor.
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