Acknowledgement
The authors greatly acknowledge the financial support from the National Natural Science Foundation of China (51978155, 52108274) and Postgraduate Research & Practice Innovation Program of Jiangsu Province (grant number: SJCX21_0056). The authors also would like to thank Postdoctoral Fellow Yiming Zhang of The Hong Kong Polytechnic University, doctoral candidate Hui Gao, doctoral candidate Ruijun Liang and doctoral candidate Zhijie Yuan of Southeast University for paper writing and computing. Finally, contributions by the anonymous reviewers are also highly appreciated.
References
- Atha, D.J. and Jahanshahi, M.R. (2018), "Evaluation of deep learning approaches based on convolutional neural networks for corrosion detection", Struct. Health Monitor., 17(5), 1110-1128. https://doi.org/10.1177/1475921717737051
- Baevski, A. and Auli, M. (2018), "Adaptive input representations for neural language modeling", arXiv preprint arXiv:1809.10853. https://doi.org/10.48550/arXiv.1809.10853
- Blachowski, B., Swiercz, A. and Pnevmatikos, N. (2015), "Experimental verification of damage location techniques for frame structures assembled using bolted connections", Proceedings of the 5th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, pp. 05-25.
- Bochkovskiy, A., Wang, C.Y. and Liao, H.Y.M. (2020), "Yolov4: Optimal speed and accuracy of object detection", arXiv preprint arXiv:2004.10934. https://doi.org/10.48550/arXiv.2004.10934
- Caesar, H., Uijlings, J. and Ferrari, V. (2018), "Coco-stuff: Thing and stuff classes in context", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1209-1218.
- Cha, Y.J., You, K. and Choi, W. (2016), "Vision-based detection of loosened bolts using the Hough transform and support vector machines", Automat. Constr., 71, 181-188. https://doi.org/10.1016/j.autcon.2016.06.008
- Cha, Y.J., Choi, W., Suh, G., Mahmoudkhani, S. and Buyukozturk, O. (2018), "Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types", Comput-Aided. Civil Infrastr., Eng., 33(9), 731-747. https://doi.org/10.1111/mice.12334
- Chaki, S. and Bourse, G. (2009), "Stress level measurement in prestressed steel strands using acoustoelastic effect", Exp. Mech., 49(5), 673-681. https://doi.org/10.1007/s11340-008-9174-9
- Devlin, J., Chang, M.-W., Lee, K. and Toutanova, K. (2018), "Bert: Pre-training of deep bidirectional transformers for language understanding", arXiv preprint arXiv:1810.04805. https://doi.org/10.48550/arXiv.1810.04805
- Ding, L. and Goshtasby, A. (2001), "On the Canny edge detector", Pattern Recognit., 34(3), 721-725. https://doi.org/10.1016/S0031-3203(00)00023-6
- Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G. and Gelly, S. (2020), "An image is worth 16x16 words: Transformers for image recognition at scale", arXiv preprint arXiv:2010.11929. https://doi.org/10.48550/arXiv.2010.11929
- Forkan, A.R.M., Kang, Y.B., Jayaraman, P.P., Liao, K., Kaul, R., Morgan, G., Ranjan, R. and Sinha, S. (2022), "CorrDetector: A framework for structural corrosion detection from drone images using ensemble deep learning", Expert Syst. Appl., 193, 116461. https://doi.org/10.1016/j.eswa.2021.116461
- Ge, Z., Liu, S., Wang, F., Li, Z. and Sun, J. (2021), "Yolox: Exceeding yolo series in 2021", arXiv preprint arXiv:2107.08430. https://doi.org/10.48550/arXiv.2107.08430
- Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, G., Cai, J. and Chen, T. (2018), "Recent advances in convolutional neural networks", Pattern Recogn., 77, 354-377. https://doi.org/10.1016/j.patcog.2017.10.013
- Hoskere, V., Narazaki, Y., Hoang, T. and Spencer Jr, B. (2018), "Vision-based structural inspection using multiscale deep convolutional neural networks", arXiv preprint arXiv:1805.01055. https://doi.org/10.48550/arXiv.1805.01055
- Huynh, T.C. (2021), "Vision-based autonomous bolt-looseness detection method for splice connections: Design, lab-scale evaluation, and field application", Automat. Constr., 124, 103591. https://doi.org/10.1016/j.autcon.2021.103591
- Huynh, T.C., Park, J.H., Jung, H.-J. and Kim, J.T. (2019), "Quasi-autonomous bolt-loosening detection method using vision-based deep learning and image processing", Automat. Constr., 105, 102844. https://doi.org/10.1016/j.autcon.2019.102844
- Jiang, Y., Zhang, M. and Lee, C.-H. (2003), "A study of early stage self-loosening of bolted joints", J. Mech. Des., 125(3), 518-526. https://doi.org/10.1115/1.1586936
- Junker, G.H. (1969), "New criteria for self-loosening of fasteners under vibration", Sae Transact., 78, 314-335. https://www.jstor.org/stable/44563013
- Mezirow, J. (1978), "Perspective transformation", Adult education, 28(2), 100-110. https://doi.org/10.1177/074171367802800202
- Muthalagu, R., Bolimera, A. and Kalaichelvi, V. (2020), "Lane detection technique based on perspective transformation and histogram analysis for self-driving cars", Comput. Electr. Eng., 85, 106653. https://doi.org/10.1016/j.compeleceng.2020.106653
- Ni, Y.H., Mao, J.X., Wang, H., Xi, Z. and Xu, Y.F. (2023), "Toward high-precision crack detection in concrete bridges using deep learning", J. Perform. Constr. Facil., 37(3), 04023017. https://doi.org/10.1061/JPCFEV.CFENG-4275
- Nikravesh, S.M.Y. and Goudarzi, M. (2017), "A review paper on looseness detection methods in bolted structures", Lat. Am. J. Solids Struct., 14, 2153-2176. https://doi.org/10.1590/1679-78254231
- Pan, X. and Yang, T. (2021), "Image-based monitoring of bolt loosening through deep-learning-based integrated detection and tracking", Comput-Aided. Civil Infrastr. Eng., 37(10), 1207-1222. https://doi.org/10.1111/mice.12797
- Park, G., Sohn, H., Farrar, C.R. and Inman, D.J. (2003), "Overview of piezoelectric impedance-based health monitoring and path forward", Shock Vib. Digest, 35(6), 451-464. https://doi.org/10.48550/arXiv.1805.01055
- Pham, H.C., Ta, Q.B., Kim, J.T., Ho, D.D., Tran, X.L. and Huynh, T.C. (2020), "Bolt-loosening monitoring framework using an image-based deep learning and graphical model", Sensors, 20(12), 3382. https://doi.org/ 10.3390/s20123382
- Pidaparti, R.M. (2007), "Structural corrosion health assessment using computational intelligence methods", Struct. Health Monitor., 6(3), 245-259. https://doi.org/10.1177/1475921707081975
- Pukelsheim, F. (1994), "The three sigma rule", Am. Stat., 48(2), 88-91. https://doi.org/10.1080/00031305.1994.10476030
- Redmon, J. and Farhadi, A. (2017), "YOLO9000: better, faster, stronger", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263-7271.
- Redmon, J. and Farhadi, A. (2018), "Yolov3: An incremental improvement", arXiv preprint arXiv:1804.02767. https://doi.org/10.48550/arXiv.1804.02767
- Redmon, J., Divvala, S., Girshick, R. and Farhadi, A. (2016), "You only look once: Unified, real-time object detection", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779-788.
- Ren, S., He, K., Girshick, R. and Sun, J. (2015), "Faster R-CNN: Towards real-time object detection with region proposal networks", IEEE Trans. Pattern Anal. Mach. Intell., 39(6), 1137-1149. https://doi.org/ 10.1109/TPAMI.2016.2577031
- Spencer Jr, B.F., Hoskere, V. and Narazaki, Y. (2019), "Advances in computer vision-based civil infrastructure inspection and monitoring", Eng., 5(2), 199-222. https://doi.org/10.1016/j.eng.2018.11.030
- Sun, L., Shang, Z., Xia, Y., Bhowmick, S. and Nagarajaiah, S. (2020), "Review of bridge structural health monitoring aided by big data and artificial intelligence: From condition assessment to damage detection", J. Struct. Eng., 146(5), 04020073. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002535
- Ta, Q.B. and Kim, J.T. (2020), "Monitoring of corroded and loosened bolts in steel structures via deep learning and Hough transforms", Sensors, 20(23), 6888. https://doi.org/10.3390/s20236888
- Ta, Q.-B., Huynh, T.C., Pham, Q.Q. and Kim, J.T. (2022), "Corroded bolt identification using mask region-based deep learning trained on synthesized data", Sensors, 22(9), 3340. https://doi.org/10.3390/s22093340
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L. and Polosukhin, I. (2017), "Attention is all you need", Adv. Neural Inform. Process., 30.
- Von Gioi, R.G., Jakubowicz, J., Morel, J.M. and Randall, G. (2008), "LSD: A fast line segment detector with a false detection control", IEEE Trans. Pattern Anal. Mach. Intell., 32(4), 722-732. https://doi.org/10.1109/TPAMI.2008.300
- Wang, T., Song, G., Wang, Z. and Li, Y. (2013a), "Proof-of-concept study of monitoring bolt connection status using a piezoelectric based active sensing method", Smart Mater. Struct., 22(8), 087001. https://doi.org/10.1088/0964-1726/22/8/087001
- Wang, T., Song, G., Liu, S., Li, Y. and Xiao, H. (2013b), "Review of bolted connection monitoring", Int. J. Distrib. Sens. Netw., 9(12), 871213. https://doi.org/10.1155/2013/871213
- Wang, C., Wang, N., Ho, S.C., Chen, X. and Song, G. (2019), "Design of a new vision-based method for the bolts looseness detection in flange connections", IEEE Trans. Ind. Electron., 67(2), 1366-1375. https://doi.org/10.1109/TIE.2019.2899555
- Weiss, K., Khoshgoftaar, T.M. and Wang, D. (2016), "A survey of transfer learning", J. Big Data, 3(1), 1-40. https://doi.org/10.1186/s40537-016-0043-6
- Xu, J., Gui, C. and Han, Q. (2020), "Recognition of rust grade and rust ratio of steel structures based on ensembled convolutional neural network", Comput-Aided. Civil Infrastr. Eng., 35(10), 1160-1174. https://doi.org/10.1111/mice.12563
- Yang, J. and Chang, F.K. (2006), "Detection of bolt loosening in C-C composite thermal protection panels: I. Diagnostic principle", Smart Mater. Struct., 15(2), 581. https://doi.org/10.1088/0964-1726/15/2/041
- Ye, X.W., Dong, C.Z. and Liu, T. (2016), "A review of machine vision-based structural health monitoring: methodologies and applications", J. Sensors, 2016. https://doi.org/10.1155/2016/7103039
- Zhang, Y., Sun, X., Loh, K.J., Su, W., Xue, Z. and Zhao, X. (2020), "Autonomous bolt loosening detection using deep learning", Struct. Health Monitor., 19(1), 105-122. https://doi.org/10.1177/1475921719837509