과제정보
This work was supported by the General Projects of Guangdong Natural Science Research Projects (grant number 2023A1515011520).
참고문헌
- Ali Ghorbani, M., Kazempour, R., Chau, K.W., Shamshirband, S. and Taherei Ghazvinei, P. (2018), "Forecasting pan evaporation with an integrated artificial neural network quantum-behaved particle swarm optimization model: a case study in Talesh, Northern Iran", Eng. Applicat. Computat. Fluid Mech., 12(1), 724-737. https://doi.org/10.1080/19942060.2018.1517052
- Allawi, M.F. and El-Shafie, A. (2016), "Utilizing RBF-NN and ANFIS methods for multi-lead ahead prediction model of evaporation from reservoir", Water Resour. Manage., 30(13), 4773-4788. https://doi.org/10.1007/s1126900-016-1452-1
- Almedeij, J. (2012), "Modeling pan evaporation for Kuwait by multiple linear regression", Scientif. World J., 2012. https://doi.org/10.1100/2012/574742
- Anderson, D. and McNeill, G. (1992), "Artificial neural networks technology", Kaman Sci. Corp. 258(6), 1-83.
- Asadi Nalivan, O., Mousavi Tayebi, S.A., Mehrabi, M., Ghasemieh, H. and Scaioni, M. (2022), "A hybrid intelligent model for spatial analysis of groundwater potential around Urmia Lake, Iran", Stoch. Environ. Res. Risk Assess.. 37, 1821-1838. https://doi.org/10.1007/s00477-022-02368-y
- Djaman, K., Koudahe, K. and Ganyo, K.K. (2017), "Trend analysis in annual and monthly pan evaporation and pan coefficient in the context of climate change in togo", J. Geosci. Environ. Protection, 5(12), 41-56. https://doi.org/10.4236/gep.2017.512003
- Eesa, A.S., Brifcani, A.M.A. and Orman, Z. (2013), "Cuttlefish algorithm-a novel bio-inspired optimization algorithm", Int. J. Scientif. Eng. Research 4 (9), 1978-1986.
- Eesa, A.S. and Orman, Z. (2020), "A new clustering method based on the bio-inspired cuttlefish optimization algorithm", Expert Syst., 37(2), e12478. https://doi.org/10.1111/exsy.12478
- Faiz, M.A., Liu, D., Fu, Q., Wrzesinski, D., Baig, F., Nabi, G., Khan, M.I., Li, T. and Cui, S. (2018), "Extreme precipitation and drought monitoring in northeastern China using general circulation models and pan evaporation-based drought indices", Climate Res., 74(3), 231-250. https://doi.org/10.3354/cr01503
- Feng, Y., Jia, Y., Zhang, Q., Gong, D. and Cui, N. (2018), "National-scale assessment of pan evaporation models across different climatic zones of China", J. Hydrol., 564, 314-328. https://doi.org/10.1016/j.jhydrol.2018.07.013
- Giernacki, W., Espinoza Fraire, T. and Kozierski, P. (2017), "Cuttlefish optimization algorithm in autotuning of altitude controller of unmanned aerial vehicle (UAV)", In: Iberian Robotics Conference, pp. 841-852. https://doi.org/10.1007/978-3-319-70833-1_68
- Goyal, M.K., Bharti, B., Quilty, J., Adamowski, J. and Pandey, A. (2014), "Modeling of daily pan evaporation in sub tropical climates using ANN, LS-SVR, Fuzzy Logic, and ANFIS", Expert Syst. Applicat., 41(11), 5267-5276. https://doi.org/10.1016/j.eswa.2014.02.047
- Guan, Y., Mohammadi, B., Pham, Q.B., Adarsh, S., Balkhair, K.S., Rahman, K.U., Linh, N.T.T. and Tri, D.Q. (2020), "A novel approach for predicting daily pan evaporation in the coastal regions of Iran using support vector regression coupled with krill herd algorithm model", Theor. Appl. Climatol., 1-19. https://doi.org/10.1007/s00704-020-03283-4
- Guven, A. and Kisi, O. (2011), "Daily pan evaporation modeling using linear genetic programming technique", Irrig. Sci., 29(2), 135-145. https://doi.org/10.1007/s00271-010-0225-5
- Guven, A. and Kisi, O. (2013), "Monthly pan evaporation modeling using linear genetic programming", J. Hydrol., 503, 178-185. https://doi.org/10.1016/j.jhydrol.2013.08.043
- Hakim, S.J.S. and Razak, H.A. (2014), "Modal parameters based structural damage detection using artificial neural networks-a review", Smart Struct. Syst., Int. J., 14(2), 159-189. https://doi.org/10.12989/sss.2014.14.2.159
- Hornik, K., Stinchcombe, M. and White, H. (1989), "Multilayer feedforward networks are universal approximators", Neural Networks, 2(5), 359-366. https://doi.org/10.1016/0893-6080(89)90020-8
- Kerem, A. and Saygin, A. (2019), "Scenario-based wind speed estimation using a new hybrid metaheuristic model: Particle swarm optimization and radial movement optimization", Measur. Control, 52(5-6), 493-508. https://doi.org/10.1177/0020294019842597
- Keshtegar, B. and Kisi, O. (2017), "Modified response-surface method: new approach for modeling pan evaporation", J. Hydrol. Eng., 22(10), 04017045. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001541
- Keshtegar, B., Piri, J. and Kisi, O. (2016), "A nonlinear mathematical modeling of daily pan evaporation based on conjugate gradient method", Comput. Electron. Agricul., 127, 120-130. https://doi.org/10.1016/j.compag.2016.05.018
- Kisi, O. (2009), "Daily pan evaporation modelling using multi-layer perceptrons and radial basis neural networks", Hydrol. Processes: Int. J., 23(2), 213-223. https://doi.org/10.1002/hyp.7126
- Kisi, O., Mansouri, I. and Hu, J.W. (2017), "A new method for evaporation modeling: dynamic evolving neural-fuzzy inference system", Adv. Meteorol., 2017. https://doi.org/10.1155/2017/5356324
- Lin, G.F., Lin, H.Y. and Wu, M.C. (2013), "Development of a support-vector-machine-based model for daily pan evaporation estimation", Hydrol. Processes, 27(22), 3115-3127. https://doi.org/10.1002/hyp.9428
- Liu, B., Xu, M., Henderson, M. and Gong, W. (2004), "A spatial analysis of pan evaporation trends in China, 1955-2000", J. Geophys. Res.: Atmospheres, 109(D15). https://doi.org/10.1029/2004JD004511
- Lu, X., Ju, Y., Wu, L., Fan, J., Zhang, F. and Li, Z. (2018), "Daily pan evaporation modeling from local and cross-station data using three tree-based machine learning models", J. Hydrol., 566, 668-684. https://doi.org/10.1016/j.jhydrol.2018.09.055
- Malik, A., Kumar, A. and Kisi, O. (2018), "Daily pan evaporation estimation using heuristic methods with gamma test", J. Irrig. Drain. Eng., 144(9), 04018023. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001336
- Malik, A., Rai, P., Heddam, S., Kisi, O., Sharafati, A., Salih, S.Q., Al-Ansari, N. and Yaseen, Z.M. (2020), "Pan evaporation estimation in Uttarakhand and Uttar Pradesh States, India: validity of an integrative data intelligence model", Atmosph., 11(6), 553. https://doi.org/10.3390/atmos11060553
- Mehrabi, M. (2021), "Landslide susceptibility zonation using statistical and machine learning approaches in Northern Lecco, Italy", Natural Hazards, 1-37. https://doi.org/10.1007/s11069-021-05083-z
- Mehrabi, M. and Moayedi, H. (2021), "Landslide susceptibility mapping using artificial neural network tuned by metaheuristic algorithms", Environ. Earth Sci., 80(24), 1-20. https://doi.org/10.1007/s12665-021-10098-7
- Mehrabi, M., Pradhan, B., Moayedi, H. and Alamri, A. (2020), "Optimizing an adaptive neuro-fuzzy inference system for spatial prediction of landslide susceptibility using four state-of-the-art metaheuristic techniques", Sensors, 20(6), 1723. https://doi.org/10.3390/s20061723
- Moayedi, H., Mehrabi, M., Mosallanezhad, M., Rashid, A.S.A. and Pradhan, B. (2019), "Modification of landslide susceptibility mapping using optimized PSO-ANN technique", Eng. Comput., 35(3), 967-984. https://doi.org/10.1007/s00366-018-0644-0
- Moayedi, H., Mehrabi, M., Bui, D.T., Pradhan, B. and Foong, L.K. (2020), "Fuzzy-metaheuristic ensembles for spatial assessment of forest fire susceptibility", J. Environ. Manag., 260, 109867. https://doi.org/10.1016/j.jenvman.2019.109867
- Moayedi, H., Ghareh, S. and Foong, L.K. (2021), "Quick integrative optimizers for minimizing the error of neural computing in pan evaporation modeling", Eng. Comput., 38, 1331-1347. https://doi.org/10.1007/s00366-020-01277-4
- Moazenzadeh, R., Mohammadi, B., Shamshirband, S. and Chau, K.W. (2018), "Coupling a firefly algorithm with support vector regression to predict evaporation in northern Iran", Eng, Applicat. Computat. Fluid Mech., 12(1), 584-597. https://doi.org/10.1080/19942060.2018.1482476
- Mohammadrezapour, O., Piri, J. and Kisi, O. (2019), "Comparison of SVM, ANFIS and GEP in modeling monthly potential evapotranspiration in an arid region (Case study: Sistan and Baluchestan Province, Iran)", Water Supply, 19(2), 392-403. https://doi.org/10.2166/ws.2018.084
- More, J.J. (1978), Numerical Analysis, Springer, pp. 105-116.
- Muhammad, M.K.I., Nashwan, M.S., Shahid, S., Ismail, T.B., Song, Y.H. and Chung, E.S. (2019), "Evaluation of empirical reference evapotranspiration models using compromise programming: a case study of Peninsular Malaysia", Sustainability, 11(16), 4267. https://doi.org/10.3390/su11164267
- Nehdi, M. and Greenough, T. (2007), "Modeling shear capacity of RC slender beams without stirrups using genetic algorithms", Smart Struct. Syst., Int. J., 3(1), 51-68. https://doi.org/10.12989/sss.2007.3.1.051
- Nguyen, H., Mehrabi, M., Kalantar, B., Moayedi, H. and Abdullahi, M.A.M. (2019), "Potential of hybrid evolutionary approaches for assessment of geo-hazard landslide susceptibility mapping", Geomat. Natural Hazards Risk, 10(1), 1667-1693. https://doi.org/10.1080/19475705.2019.1607782
- Pinkus, A. (1999), "Approximation theory of the MLP model in neural networks", Acta numerica, 8, 143-195. https://doi.org/10.1017/S0962492900002919
- Qasem, S.N., Samadianfard, S., Kheshtgar, S., Jarhan, S., Kisi, O., Shamshirband, S. and Chau, K.W. (2019), "Modeling monthly pan evaporation using wavelet support vector regression and wavelet artificial neural networks in arid and humid climates", Eng. Applicat. Computati. Fluid Mech., 13(1), 177-187. https://doi.org/10.1080/19942060.2018.1564702
- Rao, R.V., Savsani, V.J. and Vakharia, D.P. (2011), "Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems", Comput.-Aided Des., 43(3), 303-315. https://doi.org/10.1016/j.cad.2010.12.015
- Riffi, M.E. and Bouzidi, M. (2015), "Discrete cuttlefish optimization algorithm to solve the travelling salesman problem", Proceedings of 2015 3rd World Conference on Complex Systems (WCCS), pp. 1-6. https://doi.org/10.1109/ICoCS.2015.7483231
- Roushangar, K. and Shahnazi, S. (2019), "Bed load prediction in gravel-bed rivers using wavelet kernel extreme learning machine and meta-heuristic methods", Int. J. Environ. Sci. Technol., 16(12), 8197-8208. https://doi.org/10.1007/s13762-019-02287-6
- Salih, S.Q., Allawi, M.F., Yousif, A.A., Armanuos, A.M., Saggi, M.K., Ali, M., Shahid, S., Al-Ansari, N., Yaseen, Z.M. and Chau, K.W. (2019), "Viability of the advanced adaptive neuro-fuzzy inference system model on reservoir evaporation process simulation: case study of Nasser Lake in Egypt", Eng. Applicat. Computat. Fluid Mech., 13(1), 878-891. https://doi.org/10.1080/19942060.2019.1647879
- Sanikhani, H., Kisi, O., Nikpour, M.R. and Dinpashoh, Y. (2012), "Estimation of daily pan evaporation using two different adaptive neuro-fuzzy computing techniques", Water Resour. Manag., 26(15), 4347-4365. https://doi.org/10.1007/s11269-012-0148-4
- Sayari, S., Mahdavi-Meymand, A. and Zounemat-Kermani, M. (2020), "Prediction of critical velocity in pipeline flow of slurries using TLBO algorithm: a comprehensive study", J. Pipeline Syst. Eng. Practice, 11(2), 04019057. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000439
- Shimi, M., Najjarchi, M., Khalili, K., Hezavei, E. and Mirhoseyni, S.M. (2020), "Investigation of the accuracy of linear and nonlinear time series models in modeling and forecasting of pan evaporation in IRAN", Arab. J. Geosci., 13(2), 59. https://doi.org/10.1007/s12517-019-5031-7
- Termeh, S.V.R., Kornejady, A., Pourghasemi, H.R. and Keesstra, S. (2018), "Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms", Sci. Total Environ., 615, 438-451. https://doi.org/10.1016/j.scitotenv.2017.09.262
- Tikhamarine, Y., Malik, A., Kumar, A., Souag-Gamane, D. and Kisi, O. (2019), "Estimation of monthly reference evapotranspiration using novel hybrid machine learning approaches", Hydrol. Sci. J., 64(15), 1824-1842. https://doi.org/10.1080/02626667.2019.1678750
- Xu, C.Y., Gong, L., Jiang, T., Chen, D. and Singh, V.P. (2006), "Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment", J. Hydrol., 327(1-2), 81-93. https://doi.org/10.1016/j.jhydrol.2005.11.029
- Yaseen, Z.M., Ehteram, M., Sharafati, A., Shahid, S., Al-Ansari, N. and El-Shafie, A. (2018), "The integration of nature-inspired algorithms with least square support vector regression models: application to modeling river dissolved oxygen concentration", Water, 10(9), 1124. https://doi.org/10.3390/w10091124
- Yaseen, Z.M., Faris, H. and Al-Ansari, N. (2020), "Hybridized extreme learning machine model with salp swarm algorithm: a novel predictive model for hydrological application", Complexity, 2020. https://doi.org/10.1155/2020/8206245
- Ye, X., Moayedi, H., Khari, M. and Foong, L.K. (2020), "Metaheuristic-hybridized multilayer perceptron in slope stability analysis", Smart Struct. Syst., Int. J., 26(3), 263-275. https://doi.org/10.12989/sss.2020.26.3.263
- Zeinolabedini Rezaabad, M., Ghazanfari, S. and Salajegheh, M. (2020), "ANFIS modeling with ICA, BBO, TLBO, and IWO optimization algorithms and sensitivity analysis for predicting daily reference evapotranspiration", J. Hydrol. Eng., 25(8), 04020038. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001963
- Zhang, Y., Jin, Z. and Chen, Y. (2020), "Hybrid teaching-learning-based optimization and neural network algorithm for engineering design optimization problems", Knowledge-Based Syst., 187, 104836. https://doi.org/10.1016/j.knosys.2019.07.007
- Zhang, Y., Liu, L., Zhu, Y., Wang, P. and Foong, L.K. (2022), "Novel integrative soft computing for daily pan evaporation modeling", Smart Struct. Syst., Int. J., 30(4), 421-432. https://doi.org/10.12989/sss.2022.30.4.421
- Zhou, G., Moayedi, H. and Foong, L.K. (2020), "Teaching-learning-based metaheuristic scheme for modifying neural computing in appraising energy performance of building", Eng. Comput., 37, 3037-3048. https://doi.org/10.1007/s00366-020-00981-5