DOI QR코드

DOI QR Code

A surrogate model-based framework for seismic resilience estimation of bridge transportation networks

  • Sungsik Yoon (Department of Artificial Intelligence, Hannam University) ;
  • Young-Joo Lee (Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology)
  • Received : 2023.02.23
  • Accepted : 2023.07.20
  • Published : 2023.07.25

Abstract

A bridge transportation network supplies products from various source nodes to destination nodes through bridge structures in a target region. However, recent frequent earthquakes have caused damage to bridge structures, resulting in extreme direct damage to the target area as well as indirect damage to other lifeline structures. Therefore, in this study, a surrogate model-based comprehensive framework to estimate the seismic resilience of bridge transportation networks is proposed. For this purpose, total system travel time (TSTT) is introduced for accurate performance indicator of the bridge transportation network, and an artificial neural network (ANN)-based surrogate model is constructed to reduce traffic analysis time for high-dimensional TSTT computation. The proposed framework includes procedures for constructing an ANN-based surrogate model to accelerate network performance computation, as well as conventional procedures such as direct Monte Carlo simulation (MCS) calculation and bridge restoration calculation. To demonstrate the proposed framework, Pohang bridge transportation network is reconstructed based on geographic information system (GIS) data, and an ANN model is constructed with the damage states of the transportation network and TSTT using the representative earthquake epicenter in the target area. For obtaining the seismic resilience curve of the Pohang region, five epicenters are considered, with earthquake magnitudes 6.0 to 8.0, and the direct and indirect damages of the bridge transportation network are evaluated. Thus, it is concluded that the proposed surrogate model-based framework can efficiently evaluate the seismic resilience of a high-dimensional bridge transportation network, and also it can be used for decision-making to minimize damage.

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. 2022R1I1A1A01056139). This work is also supported by the Korea Agency for Infrastructure Technology Advancement (KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant RS-2021-KA163162).

References

  1. Akin, O. and Sahin, M. (2017), "Active neuro-adaptive vibration suppression of a smart beam", Smart Struct. Syst., Int. J., 20(6), 657-668. https://doi.org/10.12989/sss.2017.20.6.657
  2. Alipour, A. and Shafei, B. (2016), "Seismic resilience of transportation networks with deteriorating components", J. Struct. Eng., 142(8), C4015015. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001399
  3. Almashaqbeh, H.K., Irshidat, M.R. and Najjar, Y. (2022), "Using ANN to predict post-heating mechanical properties of cementitious composites reinforced with multi-scale additives", Smart Struct. Syst., Int. J., 29(2), 337-350. https://doi.org/10.12989/sss.2022.29.2.337
  4. ATC (1985), Earthquake damage evaluation data for California; ATC-13, Applied Technology Council.
  5. Asteris, P.G., Chountalas, A.T., Sophianopoulos, D.S., Alam, N. and Maraveas, C. (2022), "Fire resistance prediction of slim-floor asymmetric steel beams using single hidden layer ANN models that employ multiple activation functions", Steel Compos. Struct., Int. J., 44(6), 755-774. https://doi.org/10.12989/scs.2022.44.6.769
  6. Bocchini, P. and Frangopol, D. (2012), "Restoration of bridge networks after an earthquake: Multicriteria intervention optimization", Earthq. Spectra, 28(2), 427-455. https://doi.org/10.1193/1.4000019
  7. Choi, C.-H., Park, D., Najafi, F.T. and Kim, J.-L. (2007), "Time value of goods movement for project appraisal in South Korea", Transport. Res. Record, 1996(1), 92-99. https://doi.org/10.3141/1996-12
  8. Christopher, C., Pachaivannan, P. and Elamparithi, N. (2023), "Study on self-compacting polyester fiber reinforced concrete and strength prediction using ANN", Adv. Concrete Constr., Int. J., 15(2), 85-96. https://doi.org/10.12989/acc.2023.15.2.085
  9. Cimellaro, G.P., Reinhorn, A.M. and Bruneau, M. (2010), "Seismic resilience of a hospital system", Struct. Infrastr. Eng., 6(1-2), 127-144. https://doi.org/10.1080/15732470802663847
  10. Cimellaro, G.P., Tinebra, A., Renschler, C. and Fragiadakis, M. (2016), "New Resilience Index for Urban Water Distribution Networks", J. Struct. Eng., 142(8), C4015014. https://doi.org/doi:10.1061/(ASCE)ST.1943-541X.0001433
  11. Daniels, G., Stockton, W.R. and Hundley, R. (2000), "Estimating road user costs associated with highway construction projects: simplified method", Transport. Res. Record, 1732(1), 70-79. https://doi.org/10.3141/1732-09
  12. Duenas-Osorio, L., Craig, J.I. and Goodno, B.J. (2007), "Seismic response of critical interdependent networks", Earthquake Eng. Struct. Dyn., 36(2), 285-306. https://doi.org/10.1002/eqe.626
  13. Emolo, A., Sharma, N., Festa, G., Zollo, A., Convertito, V., Park, J.H., Chi, H.C. and Lim, I.S. (2015), "Ground-motion prediction equations for South Korea Peninsula", Bull. Seismol. Soc. Am., 105, 2625-2640. https://doi.org/10.1785/0120140296
  14. Esposito, S., Iervolino, I., d'Onofrio, A., Santo, A., Cavalieri, F. and Franchin, P. (2015), "Simulation-based seismic risk assessment of gas distribution networks", Comput.-Aided Civil Infrastr. Eng., 30(7), 508-523. https://doi.org/10.1111/mice.12105
  15. FEMA (2003), Multi-hazard loss estimation methodology earthquake model; Department of Homeland Security, Emergency Preparedness and Response.
  16. Florian, D. (2014), "Emme 4 Overview: New features, demonstrations and upgrade details", INRO, Montreal, November.
  17. Goda, K. and Hong, H.P. (2008), "Spatial correlation of peak ground motions and response spectra", Bull. Seismol. Soc. Am., 98(1), 354-365. https://doi.org/10.1785/0120070078
  18. Kammouh, O., Cimellaro, G.P. and Mahin, S.A. (2018), "Downtime estimation and analysis of lifelines after an earthquake", Eng. Struct., 173, 393-403. https://doi.org/https://doi.org/10.1016/j.engstruct.2018.06.093
  19. Kang, W.-H., Lee, Y.-J. and Zhang, C. (2017), "Computer-aided analysis of flow in water pipe networks after a seismic event", Mathe. Probl. Eng., 2017, 2017046. https://doi.org/10.1155/2017/2017046
  20. Lee, Y-J., Song, J., Gardoni, P. and Lim, H-W. (2011), "Post-hazard flow capacity of bridge transportation network considering structural deterioration of bridges", Struct. Infrastr. Eng., 7(7-8), 509-521. https://doi.org/10.1080/15732479.2010.493338
  21. Lee, S.-J., Lee, J.-E., Ding, N. H. and Choi, K.-K. (2022), "Time history analysis for investigation of dynamic behavioral characteristics of uninterruptible power supply system", J. Struct. Integr. Maint., 7(2), 91-109. https://doi.org/10.1080/24705314.2021.2018792
  22. Mackie, K. and Stojadinovic, B. (2006), "Post-earthquake functionality of highway overpass bridges", Earthq. Eng. Struct. Dyn., 35(1), 77-93. https://doi.org/10.1002/eqe.534
  23. Madenci, E. and Ozkilic, Y.O. (2021). "Free vibration analysis of open-cell FG porous beams: Analytical, numerical and ANN approaches", Steel Compos. Struct., Int. J., 40(2), 157-173. https://doi.org/10.12989/scs.2021.40.2.157
  24. Moayedi, H., Eghtesad, A., Khajehzadeh, M., Keawsawasvong, S., Al-Amidi, M.M. and Le Van, B. (2022). "Optimized ANNs for predicting compressive strength of high-performance concrete", Steel Compos. Struct., Int. J., 44(6), 853-868. https://doi.org/10.12989/scs.2022.44.6.867
  25. Moomen, M. and Siddiqui, C. (2022), "Probabilistic deterioration modeling of bridge component condition with random effects", J. Struct. Integr. Maint., 7(3), 151-160. https://doi.org/10.1080/24705314.2022.2048244
  26. Murachi, Y., Orikowski, M.J., Dong, X. and Shinozuka, M. (2003), "Fragility analysis of transportation networks", In: Smart Structures and Materials 2003: Smart Systems and Nondestructive Evaluation for Civil Infrastructures, San Diego, CA, USA, August.
  27. Nguyen, Q.T. and Livaoglu, R. (2021). "Combination of an inverse solution and an ANN for damage identification on high-rise buildings", Smart Struct. Syst., Int. J., 28(3), 375-390. https://doi.org/10.12989/sss.2021.28.3.375
  28. Nguyen, D.H., Bui, T.T., De Roeck, G. and Wahab, M.A. (2019), "Damage detection in Ca-Non Bridge using transmissibility and artificial neural networks", Struct. Eng. Mech., Int. J., 71(2), 175-183. https://doi.org/10.12989/sem.2019.71.2.175
  29. Nuti, C., Rasulo, A. and Vanzi, I. (2007), "Seismic safety evaluation of electric power supply at urban level", Earthq. Eng. Struct. Dyn., 36(2), 245-263. https://doi.org/10.1002/eqe.622
  30. Onat, O. and Gul, M. (2018), "Application of artificial neural networks to the prediction of out-of-plane response of infill walls subjected to shake table", Smart Struct. Syst., Int. J., 21(4), 521-535. https://doi.org/10.12989/sss.2018.21.4.521
  31. Padgett, J. and DesRoches, R. (2007), "Bridge functionality relationships for improved seismic risk assessment of transportation networks", Earthq. Spectra, 23(1), 115-130. https://doi.org/10.1193/1.2431209
  32. Peng-hui, L., Hong-ping, Z., Hui, L. and Shun, W. (2015), "Structural damage identification based on genetically trained ANNs in beams", Smart Struct. Syst., Int. J., 15(1), 227-244. https://doi.org/10.12989/sss.2015.15.1.227
  33. Porter, K. (2004), "A survey of bridge practitioners to relate damage to closure", EERL-2004-07; California Institute of Technology.
  34. Rokneddin, K., Ghosh, J., Duenas-Osorio, L. and Padgett, J.E. (2013), "Bridge retrofit prioritisation for ageing transportation networks subject to seismic hazards", Struct. Infrastr. Eng., 9(10), 1050-1066. https://doi.org/10.1080/15732479.2011.654230
  35. Shafieezadeh, A. and Burden, L.I. (2014), "Scenario-based resilience assessment framework for critical infrastructure systems: Case study for seismic resilience of seaports", Reliabil. Eng. Syst. Safety, 132, 207-219. https://doi.org/10.1016/j.ress.2014.07.021
  36. Shahbazi, Y., Delavari, E. and Chenaghlou, M.R. (2014), "Predicting the buckling load of smart multilayer columns using soft computing tools", Smart Struct. Syst., Int. J., 13(1), 81-98. https://doi.org/10.12989/sss.2013.13.1.081
  37. Shinozuka, M., Murachi, Y., Dong, X., Zhou, Y. and Orlikowski, M.J. (2003), "Effect of seismic retrofit of bridges on transportation networks", Earthq. Eng. Eng. Vib., 2(2), 169-179. https://doi.org/10.1007/s11803-003-0001-0
  38. Yoon, S., Lee, Y.-J. and Jung, H.-J. (2018), "A comprehensive framework for seismic risk assessment of urban water transmission networks", Int. J. Disaster Risk Reduct., 31, 983-994. https://doi.org/10.1016/j.ijdrr.2018.09.002
  39. Yoon, S., Lee, Y.-J. and Jung, H.-J. (2020a), "A comprehensive approach to flow-based seismic risk analysis of water transmission network", Struct. Eng. Mech., Int. J., 73(3), 339-351. https://doi.org/10.12989/sem.2020.73.3.339
  40. Yoon, S., Lee, Y.-J. and Jung, H.-J. (2020b), "Accelerated Monte Carlo analysis of flow-based system reliability through artificial neural network-based surrogate models", Smart Struct. Syst., Int. J., 26(2), 175-184. https://doi.org/10.12989/sss.2020.26.2.175
  41. Yoon, S., Kim, J., Kim, M., Tak, H.Y. and Lee, Y.-J. (2020c), "Accelerated system-level seismic risk assessment of bridge transportation networks through artificial neural network-based surrogate model", Appl. Sci., 10(18), 6476. https://doi.org/10.3390/app10186476
  42. Yoon, S., Lee, Y.-J. and Jung, H.-J. (2021a), "Flow-based seismic resilience assessment of urban water transmission network", Struct. Eng. Mech., Int. J., 79(4), 517-529. https://doi.org/10.12989/SEM.2021.79.4.517
  43. Yoon, S., Suh, W. and Lee, Y.-J. (2021b), "Optimal decision making in post-hazard bridge recovery strategies for transportation networks after seismic events", Geomat. Natural Hazards Risk, 12(1), 2629-2653. https://doi.org/10.1080/19475705.2021.1961881
  44. Zha, C., Sun, Z., Wang, J., Pan, C., Liu, Z. and Dong, P. (2022). "A general active-learning method for surrogate-based structural reliability analysis", Struct. Eng. Mech., Int. J., 83(2), 167-178. https://doi.org/10.12989/sem.2022.83.2.167
  45. Zhang, W., Wang, N. and Nicholson, C. (2017), "Resilience-based post-disaster recovery strategies for road-bridge networks", Struct. Infrastr. Eng., 13(11), 1404-1413. https://doi.org/10.1080/15732479.2016.1271813