DOI QR코드

DOI QR Code

증강 현실 응용을 위한 비구면 광학계 설계 및 제작

Design and Fabrication of Aspherical Optical System for Augmented Reality Application

  • 신창원 (주식회사 피앤씨솔루션 광기구팀) ;
  • 함형창 (주식회사 피앤씨솔루션 광기구팀) ;
  • 박애진 (주식회사 피앤씨솔루션 광기구팀) ;
  • 정희재 (주식회사 피앤씨솔루션 광기구팀) ;
  • 이강휘 (주식회사 피앤씨솔루션 광기구팀) ;
  • 최치원 (주식회사 피앤씨솔루션 광기구팀)
  • Chang-Won Shin (Department of Optical & Mechanical Design, P&C Solution) ;
  • Hyeong-Chang Ham (Department of Optical & Mechanical Design, P&C Solution) ;
  • Ae-Jin Park (Department of Optical & Mechanical Design, P&C Solution) ;
  • Hee-Jae Jung (Department of Optical & Mechanical Design, P&C Solution) ;
  • Kang-Hwi Lee (Department of Optical & Mechanical Design, P&C Solution) ;
  • Chi-Won Choi (Department of Optical & Mechanical Design, P&C Solution)
  • 투고 : 2023.04.24
  • 심사 : 2023.06.01
  • 발행 : 2023.08.25

초록

헤드 마운티드 디스플레이(head mounted display, HMD)를 이용한 증강 현실(augmented reality, AR)은 군사, 의료, 제조, 게임 및 교육 등 다양한 분야에서 활용되고 있다. 본 논문에서는 HMD에 가장 필수적인 AR 광학계의 설계 및 제작에 대해 논의한다. HMD용 AR 광학계는 디스플레이의 증강 영상과 현실 세계를 동시에 볼 수 있는 넓은 투명 영역이 필요하다. 이를 위해, AR 광학계를 각각의 특성에 따라 세 부분으로 나누어 설계 및 제작하였다. 그리고 3개의 광학계를 하나의 완전한 AR 광학계로 만들기 위해 필요한 ultra-violet (UV) 접착층의 굴절률을 고려해 설계함으로써 입력 광원이 UV 접착 층을 통과할 때의 광경로 이동(shift) 현상을 최소화하였다. 또한, AR 광학계를 설계할 때 축외 수차를 보정하고 양산에 적합하도록 2개의 비구면을 사용했다. 끝으로 HMD 양산을 위해 두께 11 mm, 대각선 화각(diagonal field of view) 40°, 무게 11.3 g의 비구면 AR 광학계를 설계하고 제작하였다.

Augmented reality (AR) using a head mounted display (HMD) is used in various fields such as military, medicine, manufacturing, gaming, and education. In this paper, we discuss the design and fabrication of the AR optical system, which is most essential for HMD. The AR optical system for HMD requires a wide transparent area in which the augmented image of the display and the real world can be viewed at the same time. To this end, an AR optical system was designed and manufactured by dividing it into three parts according to each characteristic. Also, the refractive index of the ultra-violet (UV) adhesive layer required to make the three optical systems into one complete AR optical system was considered from the design stage to minimize the optical path shift phenomenon when the input light source passes through the UV adhesive layer. In addition, when designing the AR optical system, two aspheric surfaces were used to compensate for off-axis aberration and to be suitable for mass production. Finally, for HMD mass production, an aspheric AR optical system with a thickness of 11 mm, a diagonal field of view of 40°, and a weight of 11.3 g was designed and manufactured.

키워드

과제정보

민군기술협력 사업 "전투 및 상용 차량의 전방위 상황 인식용 증강 영상시스템 기술(21-CM-BD-05)" 과제 지원.

참고문헌

  1. A. J. Lungu, W. Swinkels, L. Claesen, P. Tu, J. Egger, and X. Chen, "A review on the applications of virtualreality, augmented reality and mixed reality in surgical simulation: An extension to different kinds of surgery," Expert Rev. Med. Devices 18, 47-62 (2021). https://doi.org/10.1080/17434440.2021.1860750
  2. E. Eisenberg and J. Jensen, "Measuring and qualifying optical performance of AR/VR/MR device displays and addressing the unique visual requirements of transparent AR/MR displays," Proc. SPIE 11310, 113100S (2020).
  3. L. Jensen and F. Konradsen, "A review of the use of virtual reality head-mounted displays in education and training," Educ. Inf. Technol. 23, 1515-1529 (2018). https://doi.org/10.1007/s10639-017-9676-0
  4. P. B. Hibbard, L. C. J. van Dam, and P. Scarfe, "The implications of interpupillary distance variability for virtual reality," in Proc. 2020 International Conference on 3D Immersion (Brussels, Belgium, Dec. 15, 2020), pp. 1-7.
  5. V. Elia, M. G. Gnoni, and A. Lanzilotto, "Evaluating the application of augmented reality devices in manufacturing from a process point of view: An AHP based model," Expert Syst. Appl. 63, 187-197 (2016). https://doi.org/10.1016/j.eswa.2016.07.006
  6. H. Li, X. Zhang, G. Shi, H. Qu, Y. Wu, and J. Zhang, "Review and analysis of avionic helmet-mounted displays," Opt. Eng. 52, 110901 (2013).
  7. Y. Lou, J. Hu, A. Chen, and F. Wu, "Augmented reality display system using modulated moire imaging technique," Appl. Opt. 60, A306-A312 (2021). https://doi.org/10.1364/AO.404278
  8. L. Gu, D. Cheng, Y. Liu, J. Ni, T. Yang, and Y. Wang, "Design and fabrication of an off-axis four-mirror system for head-up displays," Appl. Opt. 59, 4893-4900 (2020). https://doi.org/10.1364/AO.392602
  9. B. J. Park, S. J. Hunt, C. Martin III, G. J. Nadolski, B. J. Wood, and T. P. Gade, "Augmented and mixed reality: Technologies for enhancing the future of IR," J. Vasc. Interv. Radiol. 31, 1074-1082 (2020). https://doi.org/10.1016/j.jvir.2019.09.020
  10. B. C. Kress and I. Chatterjee, "Waveguide combiners for mixed reality headsets: A nanophotonics design perspective," Nanophotonics 10, 41-74 (2021).
  11. K.-H. Kim and S.-C. Park, "Optical system design for a head-up display through analysis of distortion and binocular parallax," J. Opt. Soc. Korea 31, 88-95 (2020).
  12. B.-H. Kim and S.-C. Park, "Optical system design for a head-up display using aberration analysis of an off-axis two-mirror system," J. Opt. Soc. Korea 20, 481-487 (2016). https://doi.org/10.3807/JOSK.2016.20.4.481
  13. K.-H. Kim and S.-C. Park, "Design of confocal off-axis two-mirror system for head-up display," Appl. Opt. 58, 677-683 (2019). https://doi.org/10.1364/AO.58.000677
  14. J. P. Rolland, M. A. Davies, T. J. Suleski, C. Evans, A. Bauer, J. C. Lambropoulos, and K. Falaggis, "Freeform optics for imaging," Optica 8, 161-176 (2021). https://doi.org/10.1364/OPTICA.413762
  15. B. Zhang, G. Jin, and J. Zhu, "Towards automatic freeform optics design: Coarse and fine search of the three-mirror solution space," Light Sci. Appl. 10, 65 (2021).
  16. F. Duerr and H. Thienpont, "Freeform imaging systems: Fermat's principle unlocks 'first time right' design," Light Sci. Appl. 10, 95 (2021).
  17. D. Cheng, H. Chen, T. Yang, J. Ke, Y. Li, and Y. Wang, "Optical design of a compact and high-transmittance compressive sensing imaging system enabled by freeform optics," Chin. Opt. Lett. 19, 112202 (2021).
  18. T. Yang, G.-F. Jin, and J. Zhu, "Automated design of freeform imaging systems," Light Sci. Appl. 6, e17081 (2017).
  19. L. Wei, Y. Li, J. Jing, L. Feng, and J. Zhou, "Design and fabrication of a compact off-axis see-through head-mounted display using a freeform surface," Opt. Express 26, 8550-8565 (2018). https://doi.org/10.1364/OE.26.008550
  20. R. Tang, B. Zhang, G. Jin, and J. Zhu, "Multiple surface expansion method for design of freeform imaging systems," Opt. Express 26, 2983-2994 (2018). https://doi.org/10.1364/OE.26.002983
  21. Z. Zheng, X. Liu, H. Li, and L. Xu, "Design and fabrication of an off-axis see-through head-mounted display with an x-y polynomial surface," Appl. Opt. 49, 3661-3668 (2010). https://doi.org/10.1364/AO.49.003661
  22. D. Cheng, Y. Wang, H. Hua, and J. Sasian, "Design of a wide-angle, lightweight head-mounted display using free-form optics tiling," Opt. Lett. 36, 2098-2100 (2011). https://doi.org/10.1364/OL.36.002098
  23. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, UK, 1999), p. 37.
  24. H. Kuzmany, Solid-State Spectroscopy: An Introduction, 2nd ed. (Springer, Berlin, Germany, 2009), pp. 5-28.