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요 약 
 

조직병리에서 전체 슬라이드 영상의 정확한 분할은 질병 진단과 치료 계획에 매우 중요한 작업이다. 그러나 전체 슬라이드 

영상은 크기가 크고 조직의 형태, 염색 및 촬영 조건이 다양하기 때문에 기존의 자동 영상 분할 알고리즘을 항상 적용하는 

것은 어렵다. 최근 인간의 전문 지식과 알고리즘을 결합한 대화형 영상 분할 기술의 발전은 전체 슬라이드 영상 분할의 

효율 성과 정확성을 개선할 수 있는 가능성을 보여주었다. 그러나 이러한 접근 방식은 동시에 어려운 과제를 제기하기도 

했다. 본 논문에서는 다중 해상도 전체 슬라이드 영상을 활용하는 새로운 대화형 분할 방법인 ZoomISEG를 제안한다. 

기존의 단일 스케일 방법과의 비교 및 ablation study를 통해 제안된 방법의 효율성과 성능을 입증한다. 실험 결과, 제안된 

방법은 사람의 개입을 줄이면서도 최고 해상도 데이터를 사용하는 방식에 필적하는 정확도를 달성함을 확인했다. 

 
Abstract 

 
Accurate segmentation of histopathology whole slide images (WSIs) is a crucial task for disease diagnosis and treatment planning. 
However, conventional automated segmentation algorithms may not always be applicable to WSI segmentation due to their 
large size and variations in tissue appearance, staining, and imaging conditions. Recent advances in interactive segmentation, 
which combines human expertise with algorithms, have shown promise to improve efficiency and accuracy in WSI segmentation 
but also presented us with challenging issues. In this paper, we propose a novel interactive segmentation method, ZoomISEG, 
that leverages multi-resolution WSIs. We demonstrate the efficacy and performance of the proposed method via comparison 
with conventional single-scale methods and an ablation study. The results confirm that the proposed method can reduce human 
interaction while achieving accuracy comparable to that of the brute-force approach using the highest-resolution data. 

 
키워드: 대화형 영상 분할, 디지털 병리학, 다중 해상도 

Keywords: Interactive segmentation, Digital pathology, Multi-resolution 
 

1. Introduction 
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WSI is commonly used in digital pathology for disease diagnosis 
and analysis. Pathologists use WSI to analyze and make critical 



- 128 -

Image Ground Truth ZoomISEG 

 
FocalClick [1] SimpleClick [6] FocusCut [5] 

 
Figure 1: Comparison of segmentation masks generated by each method. With single-resolution WSIs, even the SOTA methods only 
generate robust masks that encompass tumor regions as a whole. In contrast, ZoomISEG satisfies pixel-wise separation of the tumor 
region required in ground truth by additionally utilizing high-resolution images in areas that require detail. 

 
decisions based on the segmentation of tissue regions of interest 
(ROIs). Accurate segmentation is essential for the precise diag- 
nosis of diseases such as cancer, as it can affect treatment plans 
and patient outcomes. However, due to the complexity and vari- 
ability of tissue samples, automatic segmentation of WSI can be 
challenging. Conventional image segmentation algorithms [1, 2] 
mainly rely on edges, which may not work well on WSIs where 
regions are separated based on texture similarity. Leveraging deep 
learning segmentation methods [3] is also limited due to the large 
size of WSI and the limited computational resources. 

The recent development of deep-learning-based interactive seg- 
mentation in the computer vision field [4, 5, 6] can be a promis- 
ing solution to address the challenging issues in WSI segmenta- 
tion, e.g., DeepScribble [7] and CGAM [8]. Interactive segmenta- 
tion allows the user to interact with the segmentation algorithm by 
selecting or correcting the segmentation results, which improves 
the accuracy of automatic segmentation and provides pathologists 
with a more efficient and intuitive tool for analyzing WSI. How- 

ever, the adaptation of existing interactive segmentation methods in 
WSI segmentation is still challenging. The state-of-the-art (SOTA) 
methods [4, 5, 6] incorporate additional focus views on ROIs or 
use modern architectures such as vision transformers. However, as 
shown in Fig. 1, they still may not capture all the necessary de- 
tails required for accurate segmentation due to the use of single- 
resolution images. This is especially problematic for ROIs with 
complex and heterogeneous structures in WSIs, such as tumor mar- 
gins or infiltrating immune cells. 

In this paper, to overcome this limitation, we propose a novel 
interactive segmentation method, ZoomISEG, that can effectively 
utilize multi-resolution WSIs. We enable information transfer from 
an image of one resolution to an image of another resolution by us- 
ing the mask-type input of the network. We prevent the issue of 
user interaction uncertainty in WSIs, where segmentation is dif- 
ficult due to ambiguous boundaries, by adding a new loss term 
referred to as click loss to the network training process. We im- 
plemented an algorithm that mimics real user behavior to quantita- 
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Figure 2: Overview of the proposed ZoomISEG. ZoomISEG deals with two different magnification levels of WSI. L1 refers to a 
magnification level of 20×, while L2 refers to a magnification level of 5×. I represents the network architecture used for interactive 
segmentation. II describes the process by which a segmentation mask is generated for a WSI using ZoomISEG. Red and green represent 
positive and negative clicks, respectively. 

 
tively evaluate the proposed method on a pathology image dataset. 
The proposed method showed competitive performance by appro- 
priately combining the efficiency of the model using low-resolution 
images and the high accuracy of the model using high-resolution 
images. 

 
 
2. Methods 

An overview of the proposed method is shown in Fig. 2. We define 
the WSIs at a magnification level of 5× as level 2 (L2) and the 
WSIs at a magnification level of 20× as level 1 (L1). The process 

of generating a segmentation mask for a WSI through ZoomISEG 
is as follows: First, a segmentation mask reflecting global context 
is generated from a low-resolution L2 image with a wide receptive 
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field. Then, additional adjustments to the mask are made using 
de- tailed information from a high-resolution L1 image for areas 
that require fine-tuning. Finally, the L2 mask is upscaled to the 
size of the L1 image using a cubic interpolation scheme, and 
partial patch masks generated from L1 are overlaid onto it to 
complete the pre- diction. This method enables the generation of 
a comprehensive mask that captures the entire context at a low 
cost, without sacri- ficing the capture of crucial details in 
significant areas. 

 
2.1 Network Architecture 

In deep-learning-based interactive segmentation, the neural net- 
work learns to incorporate click-type user interaction into 
segmen- tation masks. In this work, we modified two 
conventional segmen- tation neural networks, U-Net [3] and 
UCTransNet [9] for inter- 



- 131 -

field. Then, additional adjustments to the mask are made using 
de- tailed information from a high-resolution L1 image for areas 
that require fine-tuning. Finally, the L2 mask is upscaled to the 
size of the L1 image using a cubic interpolation scheme, and 
partial patch masks generated from L1 are overlaid onto it to 
complete the pre- diction. This method enables the generation of 
a comprehensive mask that captures the entire context at a low 
cost, without sacri- ficing the capture of crucial details in 
significant areas. 

 
2.1 Network Architecture 

In deep-learning-based interactive segmentation, the neural net- 
work learns to incorporate click-type user interaction into 
segmen- tation masks. In this work, we modified two 
conventional segmen- tation neural networks, U-Net [3] and 
UCTransNet [9] for inter- 

i=1 

i i 

Without Click Loss 

With Click Loss 

 
 

Figure 3: Comparison of predictions generated by models trained with and without click loss. The first column shows an overlay of the 
input image and segmentation mask, with green indicating the foreground click. The second column shows the output probability map. 
The model trained with click loss guarantees the class specified by the user for the clicked area. 

 
active segmentation of L2 and L1 WSIs, respectively. The network 
takes an image along with click maps generated from user clicks as 

ponent, referred to as click loss, during model training. 
We define a set of user-provided clicks as {(ui, vi, li)}N 

 

where 
input. Click maps are 2-channel inputs that include positive clicks 
generated for the foreground and negative clicks generated for the 
background. The network also takes a mask-type input such as the 
previous mask generated for the previous click or an externally 
available external mask. 

As shown in Fig. 2, the click maps and mask-type input are con- 
catenated into a 3-channel. This 3-channel input and the input im- 
age are each passed through a separate branch to generate a 64- 
channel feature map, which is then combined with the other fea- 
ture map via element-wise addition. U-Net and UCTransNet have 
multiple skip connections of different depths. To prevent the exces- 
sive dominance of click maps in generating segmentation masks 
(limited class changes confined to clicked regions), we made the 
following modification to the networks: The skip connection lo- 
cated at the shallowest part, which forms a connection before the 
64-channel feature map generated from the input image, is added 
to the feature map generated from the click maps, and the second 
shallowest skip-connection is removed. 

 
2.2 Click Loss 

Adding mask-type input, such as an externally generated mask or 
the prediction mask generated for the previous click, to the network 
input is a commonly used method [4, 5] in interactive segmentation 
of natural image datasets. However, this degrades the segmentation 
performance for WSI. We address this issue by giving more weight 
to the impact of clicks through the incorporation of a new loss com- 

(u, v) and l ∈ {−1, 1} represent the coordinates and label of each 
click, respectively. Assume f is a function implemented by the net- 
work. With an input image X and click maps C, click loss is cal- 
culated in the form of squared hinge loss, as follows: 

Lclick = Ei∈[1,N][max(li − f (X, C)u ,v , 0)]2.   (1) 

The effect of training with click loss can be observed in Fig. 3. 

 
2.3 Low-to-High Information Transfer 

Proper utilization of multi-resolution images enables rapid gen- 
eration of high-quality, high-resolution segmentation results with 
less user interaction. To achieve this, it is important to capture the 
global context through a wide receptive field in low-resolution im- 
ages that are reduced to small sizes and to leverage rich local fea- 
tures in high-resolution images only for important parts that require 
detail. Combining information from images of different resolutions 
can also have a synergistic effect when analyzing an image at a spe- 
cific resolution. Low-to-high information transfer (L2H) provides 
how the region is segmented in a global context, including neighbor 
patch information, which is unknown in the corresponding single 
high-resolution patch that occupies a small portion of the entire im- 
age. The process of L2H is as follows: First, a segmentation mask 
for the entire WSI is generated in L2, and additional inference is 
performed in L1 for ROIs that require more detail. At this time, the 
L2 segmentation mask in the area corresponding to the L1 patch is 
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Algorithm 1 Zoom Simulation  
Require: L2 patch X2, label l2 

1: for i = 1 to NoCmax do 
2: Update click maps C2 
3: Get prediction P2=network2(X2, C2) 
4: d ← the minimum Euclidian distance between clicks 
5: center coords ← the midpoint between the two clicks that 

generate d 
6: q ← the IoU of P2 and l2 
7: if d < Dthr and Qthr < q < Qmax or d < Dmin then 
8: Get L1 patch X1i with center coords 
9:  Get L2 mask M2i by cropping P2 corresponding to the 

location of X1i 
10: for j = 1 to NoCmax do 
11: Update click maps C1i 
12: Get prediction P1i=network1(X1i, C1i, M2i) 
13: end for 
14: end if 
15: end for 
16: Get Pcoarse by scaling P2 to the size of L1 
17: Get prediction P by pasting P1i to Pcoarse where i  ∈ 

[1, NoCmax] 
 18: return P  

 

cropped and entered as a mask-type input for the first click to the 
L1 model. 

 

3. Experiments 

3.1 Settings 

3.1.1 Dataset 

We utilized the PAIP2019 challenge [10] dataset, which consisted 
of hepatocellular histopathology whole slide images and tumor re- 
gion labels. A total of 441 WSIs were scaled to a magnification 
level of 5× for the L2 model, and a magnification level of 20× for 
the L1 model. Patches of size 1024 × 1024 were extracted from the 
WSIs. Among the patches with a magnification level of 5×, those 
that did not contain tumor regions were discarded, leaving a total 
of 1749 patches. At a magnification level of 20×, 12,480 patches 
were selected, where the tumor area accounted for 10% to 90% of 
the entire area. Patches at each magnification level were split into a 
9:1 ratio to train and evaluate the corresponding model. Five WSIs 
were used to evaluate the entire process through zoom simulation. 

 
3.1.2 Metrics 

Two metrics were used to measure the efficiency and performance 
of the proposed method. Mean intersection over union (mIoU) of 
the segmentation results was used to demonstrate the accuracy per- 
formance of the methods. The total number of clicks (tNoC) was 

used to show the efficiency of the methods by indicating how many 
user clicks were required to complete high-quality segmentation 
masks for the WSIs. 

 
3.1.3 Implementation Details 

We implement our models in PyTorch and test with a single 
NVIDIA RTX A6000 GPU. We set the batch size to 4. We im- 
plement modified U-Net and UCTransNet described in Subsec- 
tion 2.1 for L2 and L1 models. We trained our models using a com- 
bination of normalized focal loss proposed in [11] and click loss 
described in Subsection 2.2, where the scaling constant for click 
loss was 0.05. We sampled the clicks during training following the 
procedure of [12]. We use the Adam optimizer with β1 = 0.9, β2 
= 0.999. We set the learning rate to 5 × 10−5. We trained the L1 
network for 40 epochs and the L2 network for 100 epochs. 

 
3.1.4 Zoom Simulation 

We implement automatic zoom simulation that simulates user be- 
havior to quantitatively validate the interactive multi-resolution 
WSI segmentation method. The need for refinement in L1 is deter- 
mined by the distribution of the clicks and the quality of the mask 
generated in L2. The distance between clicks is used to represent 
the distribution of clicks and predict which part of the image should 
be zoomed in for segmentation at higher magnification. The pro- 
cess moves on to L1 after ensuring that the quality of the L2 mask 
is satisfactory enough. This simulates users sequentially analyzing 
multi-resolution images starting from low resolution. Zoom simu- 
lation is conducted according to Algorithm 1. If the quality of the 
L2 mask is better than Qmax, it is judged that additional modifica- 
tions are unnecessary. If the minimum distance between clicks is 
less than Dmin, it is judged that the ROI is too small for analysis in 
L2, and zoomed in using L1. Otherwise, if the minimum distance 
between clicks is less than Dthr and the quality of the L2 mask is 
better than Qthr, it is judged that zooming is required. The default 
Dmin, Dthr, Qthr, Qmax, and NoCmax is set to 50, 250, 0.85, 
0.95, and 20 respectively. 

 
3.2 Results 

We compare our method ZoomISEG with single-resolution mod- 
els of different magnification levels. Since the L2 model is de- 
signed to handle relatively small and low-resolution images, it 
tends to infer only a small number of patches when the image is di- 
vided into patches of the same size. Therefore, it is possible to gen- 
erate a segmentation mask with only a small number of clicks, but 
this approach shows relatively lower accuracy. On the other hand, 
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Figure 4: Comparison of ZoomISEG and single-resolution methods. The second row is the error mask for the ground truth of the 
predictions generated by each method. The red box represents the disconnection issue that occurs in the L1 model. 

 
Table 1: Comparison between ZoomISEG and single-resolution methods, and ablation study on L2H and click loss. The top result is 
indicated in bold, and the second result is underlined. 

 
Comparison of Methods Ablation Study 

Method L2 only ZoomISEG (L2+L1) L1 only w/o L2H w/o click loss 

mIoU 0.894 0.913 0.942 0.909 0.868 

tNoC 138 385 867 394 1579 

 
the L1 model is able to distinguish the boundaries of tumor re- 
gions more precisely as it is designed to handle high-resolution im- 
ages. However, as the image size increases, the number of patches 
that need to be processed also increases, and the number of clicks 
that users need to input also increases. In addition, the process of 
independently processing a large number of patches and then re- 
assembling them can lead to visual artifacts (disconnection issues) 
similar to the example shown in Fig. 4. ZoomISEG combines the 
advantages of each model to increase the accuracy of predictions at 
a reasonable cost. For regions of interest where details are impor- 
tant, ZoomISEG utilizes high-resolution images to achieve high 
accuracy, while performing inference on low-resolution images for 
the rest of the areas to maximize efficiency. As shown in Table 1, 
compared to the L2 model, the L1 model increased its performance 

by 5.37%p by adding 739 more clicks, while ZoomISEG 
achieved a 2.13%p performance increase with only 247 additional 
clicks. 

 
 
3.3 Ablation Study 

We conducted an ablation study to examine the effectiveness of 
low-to-high information transfer and click loss. As shown in Ta- 
ble 1, both L2H and click loss contributed to improving the model. 
In the case of the L1 model, only high-resolution local areas are 
independently inferred as patches, so even adjacent areas cannot 
be fully known. However, by receiving global context information 
from larger areas generated by the L2 model through L2H, it is 
possible to more effectively create high-quality masks. Click loss 
helps ensure that the model assigns the designated class to the area 
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where the user has clicked, without confusion caused by the dif- 
ficulty of learning ambiguous boundaries of cancerous regions in 
pathological images during training. 

 
4. Conclusion 

In this paper, we introduce ZoomISEG, the interactive multi- 
resolution WSI segmentation method. By utilizing WSIs of dif- 
ferent magnification levels, ZoomISEG can generate predictions 
more efficiently than a single high-resolution model and more 
accurately than a single low-resolution model. The limitation of 
this study is that currently only uni-directional information trans- 
fer from low-to-high is possible. In the future, we plan to de- 
velop a bi-directional information propagation scheme. We expect 
ZoomISEG can provide convenience in pathologists’ workflow 
when employed in the analysis or annotation tools they use. 
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where the user has clicked, without confusion caused by the dif- 
ficulty of learning ambiguous boundaries of cancerous regions in 
pathological images during training. 

 
4. Conclusion 

In this paper, we introduce ZoomISEG, the interactive multi- 
resolution WSI segmentation method. By utilizing WSIs of dif- 
ferent magnification levels, ZoomISEG can generate predictions 
more efficiently than a single high-resolution model and more 
accurately than a single low-resolution model. The limitation of 
this study is that currently only uni-directional information trans- 
fer from low-to-high is possible. In the future, we plan to de- 
velop a bi-directional information propagation scheme. We expect 
ZoomISEG can provide convenience in pathologists’ workflow 
when employed in the analysis or annotation tools they use. 
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