
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 7, Jul. 2023                                     1894 
Copyright ⓒ 2023 KSII 

 
 
http://doi.org/10.3837/tiis.2023.07.009                                                                                                                ISSN : 1976-7277 

AP-SDN: Action Program enabled 
Software-Defined Networking Architecture 
 

Zheng Zhao1, Xiaoya Fan2, Xin Xie3, Qian Mao4, and Qi Zhao5* 
1 Dalian Maritime University, China 
[e-mail: zhaozheng@dlmu.edu.cn] 

2 Dalian University of Technology, China 
[e-mail: xiaoyafan@dlut.edu.cn] 

3 Hunan University of Information Technology, China 
[e-mail: xiexin0011@gmail.com] 

4 Liaoning University, China 
[e-mail: maoqian@lnu.edu.cn] 

5 Northeastern University, China 
[e-mail: zhaoqi@mail.neu.edu.cn] 

*Corresponding author: Qi Zhao 
 

Received March 24, 2023; revised June 29, 2023; accepted July 5, 2023;  
published July 31, 2023 

 
 

Abstract 
 
Software-Defined Networking (SDN) offers several advantages in dynamic routing, flexible 
programmable control and custom application-driven network management. However, the 
programmability of the data plane in traditional SDN is limited. A network operator cannot 
change the ability of the data plane and perform complex packet processing on the data plane, 
which limits the flexibility and extendibility of SDN. In the paper, AP-SDN (Action Program 
enabled Software-Defined Networking) architecture is proposed, which extends the action set 
of SDN data plane. In the proposed architecture, a modified Open vSwitch is utilized in the 
data plane allowing the execution of action programs at runtime, thus enabling complex packet 
processing. An example action program is also implemented which transparently encrypts 
traffic for terminals. At last, a prototype system of AP-SDN is developed and experiments 
show its effectiveness and performance. 
 
 
Keywords: Action program, controller, data plane programmability, open vSwitch, SDN. 

mailto:zhaozheng@dlmu.edu.cn%5D
mailto:zhaozheng@dlmu.edu.cn%5D
mailto:zhaozheng@dlmu.edu.cn%5D


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 7, July 2023                                    1895 

1. Introduction 

Computer networks play an increasingly important role for both industry and our daily lives. 
However, with the rapid expansion of network scale and the growing of applications, the 
limitations of traditional network architectures become more apparent. In the traditional 
networks, the control plane and data plane are tightly coupled, resulting in complex protocols 
in network devices, a lack of dynamic coordination among network nodes and difficulties in 
quickly deploying new packet processing methods. These defects significantly limit further 
application of network technology. 

Software-Defined Networking (SDN) [1-4] breaks the closed system of the traditional 
network and decouples the control plane and data plane. It centralizes the control functions on 
the controller, while leaving the forwarding function on network devices. SDN enables 
centralized, flexible and fine-grained control and makes the network programmable through 
external applications. However, its data plane is not programmable and can only forward 
packets in Match-Action mode without supporting more advanced operations. Additionally, it 
lacks the ability to flexibly adapt to the rapidly evolving network protocols. To enhance the 
programmability of the data plane, Programming Protocol-independent Packet Processors (P4) 
[5, 6] is proposed. P4 switch can control the parsing and forwarding process of packets 
according to the custom-designed P4 program, and support dynamic extension of network 
protocols. However, P4 switch can only perform limited actions on packets and its 
reprogramming requires suspension of the running switches, which greatly constrains its 
programmability and brings difficulty to conducting flexible operations on packets. 

To address these problems, an Action Program enabled Software-Defined Networking 
(AP-SDN) architecture is proposed to improve the programmability of SDN data plane. AP-
SDN enables action programs to be executed on the data plane dynamically so that complex 
processing of packets becomes applicable, which gives a high degree of dynamic and 
flexibility to SDN data plane. The contributions of this paper are as follows: 

1) A novel AP-SDN architecture is proposed to improve the programmability of the data 
plane through the use of action programs. This architecture enables dynamic extension of the 
network data plane with action programs and allows complex packet processing. 

2) We modified Open vSwitch (OVS) so that action programs can be installed and launched 
dynamically, i.e., AP-OVS. Accordingly, RYU controller and OpenFlow protocol are 
extended to support management and execution of action programs. 

3) An example action program is implemented to demonstrate the practical application of 
AP-SDN, which can transparently encrypt traffic for terminals. 

4) A prototype system of AP-SDN is developed and its effectiveness and performance are 
analyzed. 

2. Related Work 

2.1 Programmable Data Plane 
SDN simplifies traditional routers by decoupling the control plane from the data plane, thus 
provides a centralized and programmable control plane. In SDN architecture, devices in the 
data plane, i.e., SDN switches, only forward packets based on the configuration specifications 
of the controller [4]. SDN greatly enhances the flexibility and controllability of the network. 
However, the lack of programmability in the data plane limits its adaptability to new network 
protocols and restricts the flexibility of SDN. 



1896                                                                                                     Zhao et al.: AP-SDN: Action Program enabled  
Software-Defined Networking Architecture 

To address this issue, Bosshart et al. [5] proposed P4, a domain-specific language that 
introduces programmability to the data plane [7]. P4 decouples protocol from hardware, which 
means network operators can program the packet processing behavior of switches by P4 
programs. P4Runtime [8] is used as southbound protocol for communicating between P4 
switches and SDN controller. There are several data plane specific languages except for P4, 
such as POF [9], packet [10] and PX [11]. However, programmable data planes incorporating 
these techniques have to suspend for a moment when they are reprogramed. In order to solve 
this problem, researchers proposed P4-hypervisors, such as HyPer4 [12] and HyperVDP [13]. 
P4-hypervisor is also a P4 program which can accommodate specific P4 programs. Those P4 
programs should be converted into table entries through a translator then installed on P4-
hypervisor to realize specific packet processing function. Thus, P4-hypervisor enables online 
updating of P4 programs. However, P4 language has limited expression power [14], resulting 
in its incompetence in complex processing of packets. Kataria et al. [15] proposed a 
programmable data plane for new IP packet processing to deal with the stochasticity in quality 
of services and inflexible address structure in traditional network. While these methods 
support address customization using programmable data planes, it has limitations when it 
comes to complex packet processing. However, AP-SDN extends the action set through 
utilizing the action programs, enabling the implementation of any packet processing logic. 

2.2 Hybrid SDN switch 
Hybrid SDN switches [16-18] combine the advantages of traditional network switch/router 
and SDN switch, achieving the benefits of both worlds. For solving the controller bottleneck 
of SDN, Bianchi et al. [19] proposed a hybrid switch named OpenState, which can achieve a 
stateful data-plane. It offloads part of the controller functions by introducing an extended finite 
state machine in the data plane. Therefore, the data plane can forward packets according to 
network state without intervention from the controller. Mekky et al. [20] proposed an extended 
application-aware SDN architecture, which offloads some application logic locally to the 
switches. This architecture reduces the switch to-controller delays involved in flow 
establishment and eliminates inefficient traffic detouring in the case of service chaining. Curtis 
et al. [21] designed DevoFlow, a hybrid SDN model, which grants partial decision-making 
capability to switches and allows switches to make local routing decisions without the 
involvement of a controller. DevoFlow reduces the control plane communication greatly and 
achieves high performance networks. Further, Xu et al. [22] designed a hybrid switch which 
integrates traditional switching and SDN switching, achieving scalability and high 
performance simultaneously. Alvarez-Horcajo et al. [23] offloaded certain control plane 
functions to the data plane. They modified BOFUSS and constructed a hybrid switch, which 
can take charge of basic bridging and cooperate in path recovery with the controller. Chang et 
al. [24] modified OVS and implemented a kind of hybrid switch with the function of topology 
discovery. This method reduces the CPU usage and traffic load on the controller significantly. 
From the security aspect, Serna et al. [25] offloaded challenge verification from the controller 
onto programmable switches and designed PCPP protocol, which effectively prevents control 
plane overload. All above-mentioned hybrid switches involve offloading certain 
functionalities from the control plane to the data plane to reduce controller overhead and 
enhance network scalability. But they do not concern about other network function in data 
plan. 

Hybrid switch is also explored to enhance capabilities of the data plane in multiple aspects. 
Fukuda et al. [26] proposed PRS architecture, in which the current OpenFlow is extended and 
OVS is modified. They added a packet processing module in OVS for combining portions of 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 7, July 2023                                    1897 

divided payloads into the original one. Krishnan [27] proposed a new SDN data plane 
architecture named OpenPATH, where SDN and network function virtualization (NFV) [28-
31] are combined. OpenPATH puts network functions (NF) inside SDN data plane and 
concentrates network management on a controller. It provides NFs with organic, reliable and 
scalable support, which greatly reduces latency and improves performance. Yu et al. [32] 
proposed a lightweight and cooperative traffic measurement based on OVS, named CountMax. 
Each switch in CountMax only processes a partial set of flows, which reduces the computing 
overhead greatly and ensures measurement accuracy at the same time. Chen et al. [33] 
presented P4SC, a system for implementing service function chains on the P4-capable data 
plane. P4SC parses and converts the service function chain (SFC) policies into a P4 program, 
then deploys the P4 program on the data plane. Zhang et al. [34] proposed a compiler-oriented 
method named Gallium, which offloads part of network functions to programmable switches 
and improves throughput greatly. In response to the issue of offloading feasibility, Chen et al. 
[35] presented LightNF system, which provides a suite of primitives for the description of 
network functions and utilizes an analyzer to analyze them. Chen et al. [36] deployed and 
managed security-oriented network functions on programmable switches for DDoS mitigation, 
achieving low cost, high flexibility and high performance. The methods mentioned above are 
similar to our AP-SDN. However, these methods extend the data plane with fixed applications, 
such as forwarding decision function and network function, while our AP-SDN dynamically 
extends the action set of SDN. We argue that our method provides more flexibility and 
extendibility to the network. In addition, our action programs can achieve finer-grained 
processing on packets. 

2.3 Network function virtualization 
NFV is a network architecture and technological paradigm that seeks to migrate the 
functionalities of traditional dedicated network devices to generic server hardware by 
leveraging software-based and virtualization approaches. NFV provides high flexibility and 
scalability, resulting in reduced operational costs. SFC [37, 38] orchestrates virtual network 
functions (VNFs) in a sequential chain, allowing for flexible configuration according to 
specific requirements. This enables a wide range of service customization and function 
combinations. 

To optimize the placement of VNF in data center networks, Hawilo et al. [39] proposed a 
mixed integer linear programming (MILP) optimization model and BACON algorithm. This 
approach takes into consideration the carrier-grade characteristics of VNFs while also 
minimizing intra- and end-to-end delays of the SFC. In the IoT scenario, Liu et al. [40] 
proposed an SFC dynamic orchestration frameworks based on deep reinforcement learning 
technique. A deep deterministic policy gradient-based algorithm is used to solve the SFC 
dynamic orchestration problem in dynamic and complex IoT networks. To solve the multi-
domain SFC routing problem, Zhao et al. [41] proposed the cooperative multi-agent 
reinforcement learning based algorithms, which achieves significant improvements in total 
network utility. For making better use of the finite substrate resources over time, Zhang et al. 
[42] consider about resource requirement for VNF instances and proposed forecast-assisted 
SFC deployment method. They constructed a model that combines the multitask regression 
layer above the graph neural networks to predict the future resource requirements. Chowdhury 
et al. [43] found that common functionality is repeatedly implemented in monolithic VNFs on 
the SFCs resulting in wasted infrastructure resources. They proposed a disaggregated packet 
processing architecture named MicroNF. MicroNF deploys VNFs using reusable, loosely-
coupled, and independently deployable components achieving same packet processing 



1898                                                                                                     Zhao et al.: AP-SDN: Action Program enabled  
Software-Defined Networking Architecture 

throughput with less CPU cost on average. All of the aforementioned methods orchestrate and 
deploy VNFs in various scenarios, enabling flexible and fine-grained packet processing. 
However, it is worth noting that in these methods, VNFs are executed on servers that are 
separate from switches or routers. Consequently, network traffic must detour through these 
servers, leading to increased routing latency caused by longer paths. In contrast, AP-SDN 
implements packet processing logic directly within switches as actions, thus mitigating the 
aforementioned drawback. 

2.4 Software Switch 
The Click modular router [44] is the first software router, which consists of a sequence of 
discrete modules and supports flexible packet processing. Click is a widely adopted framework 
for network processing, which serves as a foundation for building innovative switches, 
firewalls, and packet filters. It enables the development of new types of network devices by 
leveraging its flexible and extensible architecture. OVS [45, 46] is one kind of software switch, 
which is widely employed in SDN. It contains match-action tables and can be regarded as 
match-action forwarding pipeline of OpenFlow [45]. The Basic OpenFlow Software Switch 
(BOFUSS) [47], also known as CPqD or ofsoftswitch13, is another highly popular OpenFlow 
software switch. It can be easily modified for extended functionality and widely used in the 
research to implement new features. However, the above-mentioned software switches are not 
protocol independence, i.e., modification is required when a new protocol is added in the 
network.  

To build a protocol-independent software switch, Shahbaz et al. [48] proposed PISCES, a 
modified OVS, in which the parse, match, and action code are replaced by C code generated 
by a P4 compiler. When a new protocol is added, the manager only needs to modify the P4 
program, and compiles it to a new software switch. However, PISCES still needs re-
compilation to modify the competence of software switch. Osinski et al. [49] presented P4rt-
OVS, an original extension of OVS that enables runtime programming of protocol-
independent and stateful packet processing pipelines. P4rt-OVS extends OVS with an 
additional Berkeley Packet Filter (BPF) [50] subsystem, which enables the injection of packet 
forwarding programs at runtime and integration with the OVS forwarding pipeline. Osiński et 
al. [51] proposed a novel programmable software datapath named NIKSS. This approach 
utilizes P4 as a high-level programming abstraction, Portable Switch Architecture (PSA) as a 
fully-featured P4 forwarding model and eBPF as a packet processing engine, to achieve a high 
degree of programmability for data plane. While these programs are well-suited for multiple 
match-action model functions, such as firewall and DDoS mitigation, they are primarily 
designed for implementing simple packet processing logic. It remains challenging for them to 
execute complex actions on packets, such as packet encryption. However, the proposed AP-
SDN architecture allows for the implementation of any packet processing logic through action 
programs. 

3. AP-SDN Architecture 
In traditional SDN, the control and forwarding are separated. A network operator can program 
the control plane to control the forwarding action of the data plane. However, the action set of 
the data plane is fixed, with limited types of actions, and its extension is difficult. To solve this 
problem, AP-SDN introduces applications into the action set, so that extensible actions can be 
built in the form of action programs and deployed on the data plane, facilitating flexible and 
dynamic control over flows. AP-SDN extends traditional SDN architecture and its overall 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 7, July 2023                                    1899 

architecture is shown in Fig. 1. 
 

 
Fig. 1. The overall architecture of AP-SDN. 

Similar to traditional SDN, the AP-SDN architecture consists of a control plane and a data 
plane. The control plane (i.e., controller) of is extended to store, compile, and distribute action 
programs. When an action program is needed, the corresponding source action program will 
be compiled into executable file by the controller using a compiler based on the platform of 
target switches. Then the executable action program can be distributed to the data plane upon 
request. At last, the action program will be received and installed by the switches of AP-SDN. 

The data plane of AP-SDN is consisted of the action program enabled switches. These 
switches are derived from traditional SDN switches, which are able to manage and run action 
programs. As a manager of action programs in an action program enabled switch, the program-
manager is responsible for adding, deleting and querying action programs. In terms of 
southbound interface, OpenFlow is extended to support the use of action programs as actions 
within flow table entries. Once an action program is executed on the switch, it processes flows 
based on the flow tables installed by the controller. Thus, complex processing to certain flows 
is enabled through the action programs. 
 

 
Fig. 2. The abstract forwarding model. 

The abstracted forwarding model for AP-SDN is shown in Fig. 2. When a packet enters a 
switch, it is first matched with one or more flow tables to generate an action set, in which the 
actions will be executed sequentially. If action programs are included in the action set, they 
will be executed to process this packet. Otherwise, the packet will be processed by ordinary 



1900                                                                                                     Zhao et al.: AP-SDN: Action Program enabled  
Software-Defined Networking Architecture 

actions. The combination of multiple traditional actions and program actions will compose 
more complex operations. 

4. Implementation of AP-SDN 
To implement AP-SDN, modifications are made to the RYU controller [52], southbound 
interface protocol and OVS switch, as illustrated in Table 1. Regarding the controller of AP-
SDN, original RYU controller is modified to support the compilation and distribution of action 
programs. As southbound interface, OpenFlow is extended to support the distribution and 
installation of action programs, as well as their configuration files. The switch of AP-SDN, 
i.e., AP-OVS, which is constructed based on OVS, supports installation, execution and 
management of action programs. OVS and RYU are chosen as foundation to implement AP-
SDN because of the high performance of OVS and simplicity of RYU. Moreover, both of them 
have active communities and a wide user base. Indeed, they are not the only options, as other 
software switches and controllers like BOFUSS and ONOS can also be utilized as foundations 
for implementing AP-SDN. 

 
Table 1. Implementation of AP-SDN. 

Level 
Foundational 
software or 

protocol 
New features 

Controller RYU Compilation and distribution of action programs 

Southbound Interface OpenFlow Distribution and installation of action programs 

Switch OVS 
Installation, execution and management of action 

programs 

4.1 The Implementation of AP-OVS 
The architecture of AP-OVS is shown in Fig. 3, where program-manager is responsible for the 
management of programs and their corresponding configuration files. An action program is a 
binary executable file that functions as an action within a specific flow table entry, and its 
identification and runtime parameters are stored in a configuration file. Action programs and 
their configuration files are distributed by the controller and updated independently, thereby 
decoupling them and enhancing the switch’s flexibility. To extend the action set of AP-OVS, 
a new action type is added in the flow table, i.e., ‘program’, with a parameter ‘config_id’ that 
represents the identification of the corresponding configuration file. The program type action 
will cause vswitchd module submitting a certain flow to the action program specified by a 
configuration file. 

To enable dynamic distribution and online execution of action programs, an action-process 
table is employed in the user space of AP-OVS. Each entry in action-process table represents 
an action process, and is denoted as (config_id, shm, counter). An action process is created 
when an action program executes. The config_id specifies the configuration file of the 
corresponding action program. shm is the memory shared between vswitchd and this action 
process, facilitating rapid packet submission. This shared memory is organized as a circular 
queue to ensure that the packets are processed in order. counter is a reference number that 
tracks the number of times an action process is referenced by flow table entries. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 7, July 2023                                    1901 

 
Fig. 3. The architecture of AP-OVS. 

4.2 Installation of an Action Program 
The installation of an action program in AP-OVS is as follows: firstly, the action program is 
compiled by the controller and distributed to the AP-OVS along with its configuration file 
using extended OpenFlow protocol. Secondly, the AP-OVS stores the action program and its 
configuration file in the designated folders respectively. Lastly, the action program is launched 
as a separate process in the AP-OVS. 

The launch of an action program in AP-OVS is shown as Pseudocode 1. Within this 
process, AP-OVS receives a command from the controller (step 1) and respond accordingly 
by parsing the command. If the command is for adding a flow table entry and the instruction 
is set as a program, the config_id is obtained (step 2~5). If this config_id already exists in 
action-process table, the corresponding counter will be incremented by 1, indicating a new 
reference to this action program process (step 6~7). If the config_id is not present, AP-OVS 
reads the identification and running parameters from the configuration file specified by 
config_id and creates a new process to execute the action program using the provided running 
parameters, along with the creation of a new shared memory shm (step 8~10). Subsequently, 
(config_id, shm, 1) is added to the action-process table (step 11). 

AP-OVS can support multiple running processes concurrently. These processes operate 
independently and each occupies a distinct entry within the action-process table. 
 

Pseudocode 1. The launch of an action program in AP-OVS. 
1 
2 
3 
4 
5 
6 
7 
8 
 

9 
10 
 

11 
12 

Receive a command from controller 
if command is “add a flow table entry” 

Obtain instruction type from the flow table entry 
if instruction type is program 

Obtain config_id 
if config_id is in the action-process table 

Increase the counter of the corresponding item by 1 
else Read the identification and running parameters from the configuration 

file specified by config_id 
Create the shared memory shm 
Create a new process to execute the action program using the running 

parameters and shared memory 
Add (config_id, shm, 1) in action-process table 

end 



1902                                                                                                     Zhao et al.: AP-SDN: Action Program enabled  
Software-Defined Networking Architecture 

4.3 Packet Processing in AP-OVS 
AP-OVS enables complicated actions on packets through the installed action programs. The 
procedure of packet processing in AP-OVS is described in Pseudocode 2. Firstly, Upon the 
arrival of a packet at AP-OVS, the system looks up the current flow table to identify a matched 
flow table entry (step 2). If no corresponding entry is found, the packet will be forwarded to 
the controller (step 8). Conversely, if a match is identified, the action type of the action in flow 
table entry will be obtained (step 3~4). If the action type is program, this action will be added 
to the action set along with its parameter config_id. Otherwise, an ordinary action will be 
added (step 5~7). Iteration over the actions within the action set (step 10), if the type is not 
program, an ordinary action will be executed to the packet (step 15). Otherwise, AP-OVS will 
look up the action-process table to get the share memory shm, copy the packet to shm (step 
11~13). Then, the action process will read the packet from the shm and process it (step 14). 

 
Pseudocode 2. The procedure of packet processing in AP-OVS. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

do 
Look up the current flow table 
if a matched flow table entry is identified 

Obtain the action type of the action in flow table entry 
if the action type is program 

Add this program action to the action set along with its parameter config_id 
else add this ordinary action to the action set 

else forward the packet to the controller 
while a new flow table is needed to be matched 
for action in action set 

if the type of action is program 
Look up the action-process table to get shm 
Copy the packet to the shm 
Action process reads the packet from the shm and processes it 

else execute ordinary action 
end 

5. An Action Program Example: Traffic Encryption 
Action programs can be applied in various scenarios and operate traffic dynamically and 
flexibly. To illustrate the application of AP-SDN, let’s consider the use case of traffic 
encryption. Traditionally, traffic encryption is typically implemented at the terminals or via 
intermediary devices known as middleboxes. However, terminal encryption cannot encrypt 
any traffic in the network and middlebox encryption may increase the length of the routing 
paths. In contrast, AP-SDN offers a more efficient and flexible approach to traffic encryption 
by transparently executing action programs on switches. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 7, July 2023                                    1903 

 
Fig. 4. Schematic diagram of the encryption and decryption action program. 

To enable traffic encryption in AP-SDN, the construction and deployment of encryption 
and decryption action programs are necessary. The controller compiles these action program 
according to the target switch platforms, and installs the executable action programs and their 
configuration files on the target switches. After traffic is submitted to the action programs, the 
action programs will perform encryption or decryption for the traffic transparently. 
Considering the efficiency of packet encryption, stream encryption algorithm is chosen to 
construct the encryption and decryption action programs. Stream encryption/decryption keys 
are stored in the configuration files of the action programs and the length of keys is designed 
as the maximum payload length of IP packet. The schematic diagram of the encryption and 
decryption action programs is shown in Fig. 4. As can be seen, packets are transmitted as 
ciphertext between the encryption and decryption switch. In this application scenario, the 
encryption/decryption keys are distributed in the security channel to ensure key security. In 
fact, for stream encryption, the encryption action program and decryption action program are 
the same program. 

6. Experiments and Analysis 
In this section, the performance of AP-SDN and traditional SDN are compared. Fig. 5 shows 
the experimental network topologies, in which Fig. 5(a) is a traditional SDN and Fig. 5(b) is 
a traditional SDN with two middleboxes MB1 and MB2. These middleboxes perform 
encryption and decryption on the traffic passing through them. Fig. 5(c) is a hybrid SDN, 
wherein S1 and S2 are hybrid switches. These switches are modified version of OVS that 
incorporate built-in encryption and decryption function. Lastly, Fig. 5(d) is an AP-SDN 
network, wherein S1 and S2 are AP-OVSes. Encryption and decryption action programs 
mentioned in Section 5 are executed on S1 and S2. 

In our experiments, AP-OVS is installed on the DELL Precision 3640 tower station 
equipped with i7-10700 CPU running at 2.90GHz, with 8 GB RAM and one four-port 
Broadcom 1000Mbps NIC, running ubuntu18.04-Linux 4.17 operating system. As a controller, 
a modified RYU is deployed on DELL T7920 tower station equipped with one Xeon 5218R 
CPU running at 2.1GHz, with 64 GB RAM and one dual-port Intel 1000Mbps NIC, running 
ubuntu18.04-Linux 4.17 operating system. The experiments are conducted using OVS version 
2.13.3, upon which the AP-OVS is developed. Hosts and middleboxes are deployed on the 
X86 platform equipped with i7-10510U CPU running at 1.80GHz, with 8 GB RAM and 
running ubuntu18.04-Linux 4.17 operating system. 



1904                                                                                                     Zhao et al.: AP-SDN: Action Program enabled  
Software-Defined Networking Architecture 

 
Fig. 5. Experimental network topologies. 

6.1 Network Delay Analysis 
To verify the data forwarding performance of AP-SDN, we compared the network delay 
between AP-SDN and traditional SDN from the following three aspects. 

1) Comparison of network delay without action program execution in AP-SDN 
In this experiment, Ping tool was used in traditional SDN (Fig. 5(a)) and AP-SDN (Fig. 

5(d)) to test the round-trip time (RTT) between source host h1 and destination hosts h2, h3, 
h4, when no action program was executed on AP-SDN. ICMP packets were sent from host h1 
to one of the destination hosts at a rate of 1 packet per second for a duration of 100 seconds. 
The network delay, measured in terms of RTT, is presented in Fig. 6. The results showed that 
both AP-SDN and traditional SDN had similar network delays. This outcome is expected since 
no action program is running in AP-SDN and the packets are processed in the same way as in 
traditional network. Furthermore, the results revealed a shorter delay from h1 to h2 compared 
to the delay from h1 to h3/h4 in both networks. This could be explained by the fact that the 
path between h1 and h2 is shorter. 
 

 
Fig. 6. Comparison of network delay without action program execution in AP-SDN. 

2) Comparison of network delay with action programs execution in AP-SDN 
To evaluate the forwarding performance of AP-SDN when action programs are executed, 

the network delays were measured in both traditional SDN and AP-SDN. In both networks, 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 7, July 2023                                    1905 

host h2 generated traffic ranging from 100M to 900M and sent them to h3 to simulate network 
background traffic. The RTT between host h1 to h4 was measured. The difference was that in 
AP-SDN, the background traffic was encrypted and decrypted by action programs on switch 
S1 and S2. The RTT was measured for 100 times for both networks in this experiment. The 
test traffic in neither network was encrypted or decrypted. As shown in Fig. 7, the network 
delay in AP-SDN is comparable to that in traditional SDN. This implies that the increase in 
traffic processed by the action programs does not cause additional time consumption for traffic 
that is not processed by them. 
 

 
Fig. 7. Comparison of network delay with action programs execution in AP-SDN. 

3) Network delay comparison when test traffic was processed by action programs 
In this experiment, network delays between host h1 and h4 were compared among four 

different network topologies shown in Fig. 5. For all four networks, host h2 generated traffic 
ranging from 100M to 900M and sent them to h3 to simulate network background traffic. The 
RTT between host h1 to h4 was measured for 100 times. The differences among these 
networks were as follows: 

 In traditional SDN, the traffic between host h1 and h4 was routed based on the 
shortest path. 

 In SDN+Middlebox, background traffic between h1 and h4 was encrypted and 
decrypted by middleboxes MB1 and MB2, respectively. The traffic was sent from 
h1 to h4 and encrypted by MB1. It was then sent back to the network and decrypted 
by MB2 before being forwarded to host h4. Similarly, traffic in the opposite direction 
was encrypted by MB2 and decrypted by MB1. 

 In hybrid SDN, traffic between h1 and h4 was encrypted and decrypted by built-in 
encryption and decryption modules in the switch S1 and S2. 

 In AP-SDN, traffic between h1 and h4 was encrypted and decrypted by the action 
programs running on switch S1 and S2. 

The encryption and decryption functions in middleboxes, hybrid switches and AP-OVS 
were implemented in C language, and the encryption algorithms were stream encryption. The 
results are presented in Fig. 8. The network delay in traditional SDN was lower than that in 
other three networks. This is reasonable since these latter networks involve additional 
encryption and decryption processes, which consumes more time. Compared with 
SDN+Middlebox, the network delay of AP-SDN was much lower. There are two reasons 



1906                                                                                                     Zhao et al.: AP-SDN: Action Program enabled  
Software-Defined Networking Architecture 

behind this. Firstly, in SDN+Middlebox, the traffic is required to take a detour and follow a 
longer routing path when passing through the middleboxes, resulting in increased transmission 
delays. Secondly, in SDN+Middlebox, the traffic between the two hosts traverses multiple 
middleboxes and network protocol stacks, leading to repeated packet processing and increased 
processing delays. The results showed an advantage of the proposed AP-SDN in network delay 
over SDN+Middlebox for traffic encryption. On the other hand, the network delay of hybrid 
SDN is slightly lower than AP-SDN. This is because the encryption/decryption operation in 
hybrid SDN follows a fixed and more direct approach. However, it is important to note that 
this fixed approach sacrifices flexibility. Additionally, the network delay of AP-SDN barely 
increases as the background traffic volume increases. 
 

 
Fig. 8. Network delay comparison when test traffic was processed by action programs. 

6.2 The Network Throughput of AP-SDN 
In this experiment, the network throughputs of AP-SDN, SDN, SDN+Middlebox and hybrid 
SDN were compared. Iperf3 tool was used to measure the network throughput from host h1 to 
h4 using different packet sizes on the four network topologies shown in Fig. 5. As can be seen 
in Fig. 9, the network throughput of AP-SDN and SDN are nearly identical when the traffic is 
not processed by action programs. However, when the traffic is processed by the action 
program, the network throughput of AP-SDN decreases by 26.1% on average. Nevertheless, 
when the packet size reaches 1024, the network throughput of AP-SDN becomes comparable 
to that of traditional SDN. Similar trends are observed in SDN+Middlebox and hybrid SDN. 
The network throughputs in these networks were lower because the encryption and decryption 
of a large number of packets cannot be completed within a short time, thereby limiting the 
throughput. But note that encryption is a computationally intensive task and our current code 
is not yet fully optimized. For example, our encryption action programs only run with a signal 
thread. If multithreading is adopted, AP-SDN throughput would be significantly improved. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 7, July 2023                                    1907 

 
Fig. 9. The network throughput comparison. 

6.3 Installation Delay of Flow Table and Action Program 
In the AP-SDN architecture, the controller is responsible for distributing action programs to 
specific switches, which are then installed on these switches. This process is similar to the 
installation of flow tables in traditional SDN and incurs certain delays. In this section, we focus 
on evaluating the installation delay within the AP-SDN. We conducted experiments aiming at 
measuring the installation delays of both traditional SDN and AP-SDN in three distinct 
scenarios as follows. 

Scenario 1: The installation delay of flow tables in traditional SDN. 
Scenario 2: The installation delay of flow tables in AP-SDN. 
Scenario 3: The total installation delay of flow tables and action programs in AP-SDN. 
Direct measurement of installation delay is challenging, but installation delay can be 

inferred from the end-to-end communication delay. When there are no corresponding flow 
table rules or action programs installed in the switches, the communication delay increases 
accordingly serving as an indicator of the installation delay. Based on this approach, the 
installation delays were quantified by calculating the discrepancy in communication delay 
between networks with installed flow tables or action programs and the scenario where they 
were absent. 

 
Fig. 10. Delay comparison between installation flow rules and action programs. 



1908                                                                                                     Zhao et al.: AP-SDN: Action Program enabled  
Software-Defined Networking Architecture 

All measurements were conducted for 100 times. Note that the installation delay of action 
program excluded the compilation time of source action program. The size of executable 
action program file was 13K, including configuration file. Results are shown in Fig. 10. 
Results indicate that the installation delay of flow tables in AP-SDN and traditional SDN 
exhibits a comparable performance in Scenario 1 and Scenario 2. However, when AP-SDN 
installed both actions and flow table rules in Scenario 3, the installation time increased by 
1.2ms on average. 

6.4 Number of flow table rules and features 
SDN+Middlebox (Fig. 5(b)), hybrid SDN (Fig. 5(c)) and AP-SDN (Fig. 5(d)) can all achieve 
traffic encryption. However, the encryption and decryption operations differ in their respective 
implementations. In SDN+Middlebox, these operations occur within the middleboxes, 
whereas in the other two architectures, they take place inside the switches. For 
SDN+Middlebox, additional flow table rules need to be configured on switch S1 and S2 to 
send specified traffic to the middleboxes, which increases the overhead in terms of flow table 
space. On the other hand, both hybrid SDN and AP-SDN perform encryption and decryption 
directly within the switches, requiring no additional flow table rules. The numbers of flow 
table rules required to enable encrypted communication between h1 and h4 in these three 
networks are shown in Table 2. 

 
Table 2. Number of flow table rules required in SDN+Middlebox and AP-SDN. 

Network type Number of flow table rules of S1 Number of flow table rules of S2 
SDN+Middlebox 4 4 

Hybrid SDN 2 2 
AP-SDN 2 2 

 
In AP-SDN, the network functions are implemented in the form of action programs, which 

are dynamically distributed from the controller to the specified switches in the data plane. In 
contrast, SDN+Middlebox and hybrid SDN have fixed middleboxes and hybrid switches, 
making it challenging to update them dynamically. Therefore, compared to SDN+Middlebox 
and hybrid SDN, AP-SDN is superior in terms of flexibility, as it enables fast migration and 
dynamic update of action programs through dynamic distribution. Since the network functions 
are implemented directly within switches in hybrid SDN and AP-SDN, no middlebox is 
required, which reduces the deployment and management costs of middleboxes. The 
distinguishing features of SDN+Middlebox, hybrid SDN and AP-SDN are summarized in 
Table 3. 

 
Table 3. Comparison about features of AP-SDN and SDN+Middlebox. 

Network type Flexibility 
Fast 

migration 

Dynamic 

update 

Deployment 

cost 

Management 

cost 

SDN+Middlebox Low Difficult Difficult High High 
Hybrid SDN Low  Difficult  Difficult  Low  Low  

AP-SDN High Easy Easy Low Low 

 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 7, July 2023                                    1909 

7. Discussion 

7.1 Comparison with existing schemes 
AP-SDN enhances the flow processing capability of SDN data plane and supports dynamic 
extension of the switch functions. While P4 switch and hybrid switch can also be utilized to 
implement custom-designed functions, AP-SDN differs from both of them in several aspects. 

Despite the high performance achieved by P4 switches for packet processing using 
programmable switching ASICs, AP-SDN offers advantages over P4. The reasons are 
threefold. 

1) Incremental function extension: In AP-SDN, the functions of switches can be extended 
incrementally by installing specific action programs. In contrast, extending the function of a 
P4 switch requires rebuilding the entire packet forwarding logic. Thus, AP-SDN provides 
greater flexibility. 

2) Online updates: Reprogramming to a P4 switch requires suspending the switch, which 
greatly constrains its programmability and narrows its application scenarios. But updating or 
adding action programs in AP-SDN can be done online without suspension of any switch. 

3) Enhanced programmability: The P4 switches can only perform limited actions on 
packets, which greatly restricts its programmability and hinders flexible packet operations. 
However, the action program of AP-SDN can implement any logic for packet processing, 
enabling flexible packet operations. 

Regarding hybrid switches, they are typically extended with special functions such as path 
recovery, traffic measurement and attack defense. Each custom-designed function requires 
modifying the switch, resulting in a fixed function that cannot be updated online. AP-SDN, on 
the other hand, adopts dynamic function extension, allowing all custom-designed functions to 
be implemented as action programs and installed on switches without modifying the switches 
themselves. 

Overall, AP-SDN offers advantages in dynamic extension and flexible programmability, 
making it more suitable for the scenarios that require special or dynamic network function. P4 
switch has more advantages in high-speed forwarding due to its high performance. Hybrid 
switch are more suitable for network with fixed functions and lower management cost. 
Consequently, we believe that the proposed AP-SDN is a beneficial complement to existing 
schemes. 

7.2 Scalability 
Similar to SDN, scalability is an important consideration for AP-SDN. When applying AP-
SDN to large-scale networks, several scalability issues need to be addressed: 

1) Excessive controller load: As the network size grows, the controller may experience a 
heavy workload due to the compilation, decision-making, and distribution of action programs. 
Compiling a large number of action programs with complex logic can be computationally 
intensive. 

2) Switch storage space: With numerous user-specific requirements, switches need to store 
and install a large number of action programs, leading to significant storage pressure on the 
switches. 

3) Switch processing delay: In AP-SDN, switches execute action programs to process 
packets. With a large scale of network, the switch processing delay becomes a scalability 
concern. Efficient execution of action programs is essential to ensure timely packet forwarding. 

4) Communication delay and overhead: Communication between the controller and 
switches, particularly for distributing action programs and flow rules, can introduce delay and 



1910                                                                                                     Zhao et al.: AP-SDN: Action Program enabled  
Software-Defined Networking Architecture 

overhead. As the network scales, communication delay and overhead between the controller 
and switches increases, potentially diminishing the controller's ability to quickly perceive the 
network status and conduct timely control. 

To address these scalability challenges, several solutions can be employed. Firstly, the 
excessive load on the controller can be mitigated by using multiple controllers. Secondly, a 
hierarchical storage approach can be adopted to alleviate storage pressure on switches. 
Frequently used or prioritized action programs can be stored in switches, whereas less 
frequently used programs are stored centrally in the controller. Thirdly, switch processing 
delay can be minimized through techniques such as hardware acceleration and caching, 
ensuring efficient execution of action programs. Lastly, a proactive action program installation 
strategy can help improve the situation of communication delay and overhead between 
controller and switch. 

7.3 Security Risk 
AP-SDN introduces action program running inside switches and offers some advantages. But 
it also brings additional security risks. Three typical security risks are as following. 

1) Malicious action programs: If an attacker installs malicious action programs inside 
switches, these switches may be controlled by the attackers and various malicious actions can 
be conducted. 

2) Action program vulnerabilities: Software vulnerabilities cannot be avoided with current 
technology. A high-risk action program vulnerability may make the whole switch crashed. 
Attackers can exploit vulnerabilities to attack target switches, potentially resulting in a 
decrease in network connectivity. 

3) Action program confidentiality and integrity: Action programs and their configuration 
files are distributed by the controller and transmitted over the network. They can be sniffed by 
the attackers, resulting in the disclosure of sensitive information such as encryption keys. They 
can also modify action programs and their configuration files. 

Despite these security risks, effective security management and mechanisms can mitigate 
them, making AP-SDN reliable and stable. Firstly, action programs are managed by network 
managers and isolated from common users, making it difficult for attackers to install malicious 
action programs in switches. Secondly, action programs can be isolated from packet exchange 
process in AP-VOS. This can be achieved through containerization or virtualization 
technologies. That is to say, even if action programs on an AP-OVS crash, the packet exchange 
process will continue to work normally. Lastly, action programs and their configuration files 
are transmitted through secure channels between the controller and switches, employing 
protocols such as transport layer security (TLS) protocol used in the traditional SDN. The cost 
of sniffing or modifying the action programs for the attackers would be significantly high. 

7.4 Application Scenarios 
AP-SDN opens up the action set of SDN data plane, allowing the switches to dynamically 
acquire new capabilities under the control of controller. Each switch can possess different 
abilities based upon user requirement and network statement. Furthermore, the abilities of 
switches can be evolved continuously and transparently without redeploying network devices. 
With these advantages, AP-SDN can be applied in various fields, including network security, 
edge computing, network function, in-network computing and others. 

For instance, AP-SDN can be used in DDoS attack traffic scrubbing. Although traditional 
switches can be used to scrub attack traffic with scrubbing rules, but they can only scrub a part 
of attack traffic in the mode of “match-action”. More sophisticated actions go beyond the 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 7, July 2023                                    1911 

capability of the switch, such as those that require complex arithmetic operations, loops, or 
application layer processing [53]. AP-SDN will be a suitable choice in this scenario, because 
any action can implement using an action program, without limitation of the switching ASIC. 
Another example is network function, where various network functions can be implemented 
using action programs and installed on any switch flexibly instead of deploying dedicated 
devices. 

Our AP-SDN is built based on virtual switch OVS. It is worth noting that the performance 
of OVS improves gradually along with the optimization on it. It has been widely deployed in 
real network to provide high-throughput and low-latency packet exchange. Besides, the basic 
architecture with separated control and forwarding in AP-SDN is the same as in traditional 
SDN, which means that AP-SDN can be incrementally deployed within traditional SDN to 
form a hybrid SDN network. 

8. Conclusion 
In this paper, a novel SDN architecture, action program enabled software-defined networking 
(AP-SDN), is proposed. AP-SDN can execute action programs distributed by controller on the 
data plane at runtime, thereby achieving complex packet processing. This architecture 
significantly enhances the programmability and packet processing ability of SDN data plane. 
AP-SDN is highly dynamic and flexible. We took flow encryption as a use case of AP-SDN. 
Experiments on the real network showed the effectiveness and potential of AP-SDN. 

Although the current version of AP-SDN cannot fulfill all the possible flow processing 
requirements, we believe that action programmable SDN can be beneficial in many scenarios. 
In future studies, our focus will be on the following aspects: 1) AP-SDN will be deployed in 
larger network with a broader range of implemented action programs. 2) The strategies for 
defending AP-SDN from attacks will be further investigated. 3) AP-SDN and P4 language will 
be combined to construct a protocol-oblivious, action-free data plane. 

References 
[1]   K. Kirkpatrick, “Software-defined networking,” Communications of the ACM, vol. 56, no. 9, pp. 

16-19, 2013. Article (CrossRef Link) 
[2]   F. Hu, Q. Hao, and K. Bao, “A survey on software-defined network and openflow: From concept 

to implementation,” IEEE Communications Surveys & Tutorials, vol. 16, no. 4, pp. 2181-2206, 
2014. Article (CrossRef Link) 

[3]   S. Badotra, and S. N. Panda, “A survey on software defined wide area network,” International 
Journal of Applied Science and Engineering, vol. 17, no. 1, pp. 59-73, 2020.  
Article (CrossRef Link) 

[4]   D. S. Rana, S. A. Dhondiyal, and S. K. Chamoli, “Software defined networking (SDN) challenges, 
issues and solution,” International Journal of Computer Sciences and Engineering, vol. 7, no. 1, 
pp. 884-889, 2019. Article (CrossRef Link) 

[5]   P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford, C. Schlesinger, D. Talayco, 
A. Vahdat, and G. Varghese, “P4: Programming protocol-independent packet processors,” ACM 
SIGCOMM Computer Communication Review, vol. 44, no. 3, pp. 87-95, 2014.  
Article (CrossRef Link) 

[6]   S. Kaur, K. Kumar, and N. Aggarwal, “A review on P4-Programmable data planes: architecture, 
research efforts, and future directions,” Computer Communications, vol. 170, pp. 109-129, 2021. 
Article (CrossRef Link) 

[7]   A. Liatifis, P. Sarigiannidis, V. Argyriou, and T. Lagkas, “Advancing SDN from OpenFlow to P4: 
A Survey,” Computing Surveys, vol. 55, no. 9, pp. 1-37, 2023. Article (CrossRef Link) 

https://doi.org/10.1145/2500468.2500473
https://doi.org/10.1109/COMST.2014.2326417
https://doi.org/10.6703/IJASE.202003_17(1).059
http://dx.doi.org/10.26438/ijcse/v7i1.884889
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1016/j.comcom.2021.01.027
https://doi.org/10.1145/3556973


1912                                                                                                     Zhao et al.: AP-SDN: Action Program enabled  
Software-Defined Networking Architecture 

[8]   The P4.org API Working Group, “P4Runtime Specification,” 2020. [Online]. Available: 
https://p4.org/p4-spec/p4runtime/v1.0.0/P4Runtime-Spec.html. 

[9]   H. Song, “Protocol-oblivious forwarding: Unleash the power of SDN through a future-proof 
forwarding plane,” in Proc. of the 2nd ACM SIGCOMM workshop on HotSDN, HongKong, China, 
pp. 127-132, 2013. Article (CrossRef Link) 

[10] P. Jungck, R. Duncan, and D. Mulcahy, packetC Programming, NewYork, NY, USA: Springer, 
2011. Article (CrossRef Link) 

[11] G. Brebner, and W. Jiang, “High-speed packet processing using reconfigurable computing,” IEEE 
Micro, vol. 34, no. 1, pp. 8-18, 2014. Article (CrossRef Link) 

[12] D. Hancock, and J. Van der Merwe, “Hyper4: Using p4 to virtualize the programmable data plane,” 
in Proc. of the 12th Int. Conf. CoNEXT, Irvine California, USA, pp. 35-49, 2016.  
Article (CrossRef Link) 

[13] C. Zhang, J. Bi, Y. Zhou, and J. Wu, “HyperVDP: High-performance virtualization of the 
programmable data plane,” IEEE Journal on Selected Areas in Communications, vol. 37, no. 3, pp. 
556-569, 2019. Article (CrossRef Link) 

[14] S. Ibanez, G. Brebner, N. McKeown, and N. Zilberman, “The p4-> netfpga workflow for line-rate 
packet processing,” in Proc. of the 2019 ACM/SIGDA Int. Sym. on FPGA, Seaside, CA, USA, pp. 
1-9, 2019. Article (CrossRef Link) 

[15] B. Kataria, M. P. R, L. Monis, M. P. Tahiliani, and K. Makhijani, “Programmable Data Plane for 
New IP using eXpress Data Path (XDP) in Linux,” in Proc. of 23rd Int. Conf. on HPSR, Taicang, 
Jiangsu, China, pp. 9-16, 2022. Article (CrossRef Link) 

[16] S. Khorsandroo, A. G. Sánchez, A. S. Tosun, J. M. Arco, and R. Doriguzzi-Corin, “Hybrid SDN 
evolution: A comprehensive survey of the state-of-the-art,” Computer Networks, vol. 192, pp. 
107981, 2021. Article (CrossRef Link) 

[17] R. Amin, M. Reisslein, and N. Shah, “Hybrid SDN networks: A survey of existing approaches,” 
IEEE Communications Surveys & Tutorials, vol. 20, no. 4, pp. 3259-3306, 2018.  
Article (CrossRef Link) 

[18] X. Huang, S. Cheng, K. Cao, P. Cong, T. Wei, and S. Hu, “A survey of deployment solutions and 
optimization strategies for hybrid SDN networks,” IEEE Communications Surveys & Tutorials, 
vol. 21, no. 2, pp. 1483-1507, 2019. Article (CrossRef Link) 

[19]  G. Bianchi, M. Bonola, A. Capone, and C. Cascone, “Openstate: programming platform-
independent stateful openflow applications inside the switch,” ACM SIGCOMM Computer 
Communication Review, vol. 44, no. 2, pp. 44-51, 2014. Article (CrossRef Link) 

[20] H. Mekky, F. Hao, S. Mukherjee, Z.-L. Zhang, and T. Lakshman, “Application-aware data plane 
processing in SDN,” in Proc. of the 3rd ACM SIGCOMM workshop on HotSDN, Chicago, Illinois, 
USA, pp. 13-18, 2014. Article (CrossRef Link) 

[21] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and S. Banerjee, “DevoFlow: 
Scaling flow management for high-performance networks,” in Proc. of Int. Conf. on SIGCOMM, 
Toronto, Ontario, Canada, pp. 254-265, 2011. Article (CrossRef Link) 

[22] H. Xu, H. Huang, S. Chen, and G. Zhao, “Scalable software-defined networking through hybrid 
switching,” in Proc. of IEEE Conf. on Computer Communication, Atlanta, GA, USA, pp. 1-9, 2017. 
Article (CrossRef Link) 

[23] J. Alvarez‐Horcajo, I. Martinez‐Yelmo, E. Rojas, J. A. Carral, and D. Lopez‐Pajares, “New 
cooperative mechanisms for software defined networks based on hybrid switches,” Transactions 
on Emerging Telecommunications Technologies, vol. 28, no. 8, pp. e3150, 2017.  
Article (CrossRef Link) 

[24] Y.-C. Chang, H.-T. Lin, H.-M. Chu, and P.-C. Wang, “Efficient topology discovery for software-
defined networks,” IEEE Transactions on Network and Service Management, vol. 18, no. 2, pp. 
1375-1388, 2021. Article (CrossRef Link) 

[25] C. B. Serna, and C. Mas-Machuca, “Preventing Control Plane Overload in SDN Networks with 
Programmable Data Planes,” in Proc. of 18th Int. Conf. on Network and Service Management, 
Atlanta, GA, USA, pp. 37-45, 2022. Article (CrossRef Link) 

https://p4.org/p4-spec/p4runtime/v1.0.0/P4Runtime-Spec.html
https://doi.org/10.1145/2491185.2491190
https://link.springer.com/content/pdf/10.1007/978-1-4302-4159-1.pdf
https://doi.org/10.1109/MM.2014.19
https://doi.org/10.1145/2999572.2999607
https://doi.org/10.1109/JSAC.2019.2894308
https://doi.org/10.1145/3289602.3293924
https://doi.org/10.1109/HPSR54439.2022.9831409
https://doi.org/10.1016/j.comnet.2021.107981
https://doi.org/10.1109/COMST.2018.2837161
https://doi.org/10.1109/COMST.2018.2871061
https://doi.org/10.1145/2602204.2602211
https://doi.org/10.1145/2620728.2620735
https://doi.org/10.1145/2018436.2018466
https://doi.org/10.1109/INFOCOM.2017.8057001
https://doi.org/10.1002/ett.3150
https://doi.org/10.1109/TNSM.2020.3047623
https://doi.org/10.23919/CNSM55787.2022.9964491


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 7, July 2023                                    1913 

[26] H. Fukuda, and S. Kojima, “PRS: a payload inspection mechanism for software defined network,” 
in Proc. of 16th IEEE Ann. CCNC, Las Vegas, NV, USA, pp. 1-6, 2019. Article (CrossRef Link) 

[27] P. Krishnan, S. Duttagupta, and R. Buyya, “OpenPATH: Application aware high-performance 
software-defined switching framework,” Journal of Network and Computer Applications, vol. 193, 
pp. 103196, 2021. Article (CrossRef Link) 

[28] S. Yang, F. Li, S. Trajanovski, R. Yahyapour, and X. Fu, “Recent advances of resource allocation 
in network function virtualization,” IEEE Transactions on Parallel and Distributed Systems, vol. 
32, no. 2, pp. 295-314, 2021. Article (CrossRef Link) 

[29] S. Mostafavi, V. Hakami, and M. Sanaei, “Quality of service provisioning in network function 
virtualization: a survey,” Computing, vol. 103, pp. 917-991, 2021. Article (CrossRef Link) 

[30] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function virtualization: Challenges and 
opportunities for innovations,” IEEE Communications Magazine, vol. 53, no. 2, pp. 90-97, 2015. 
Article (CrossRef Link) 

[31] H. Hawilo, A. Shami, M. Mirahmadi, and R. Asal, “NFV: state of the art, challenges, and 
implementation in next generation mobile networks (vEPC),” IEEE network, vol. 28, no. 6, pp. 18-
26, 2014. Article (CrossRef Link) 

[32] X. Yu, H. Xu, D. Yao, H. Wang, and L. Huang, “CountMax: A lightweight and cooperative sketch 
measurement for software-defined networks,” IEEE/ACM Transactions on Networking, vol. 26, 
no. 6, pp. 2774-2786, 2018. Article (CrossRef Link) 

[33] X. Chen, D. Zhang, X. Wang, K. Zhu, and H. Zhou, “P4sc: Towards high-performance service 
function chain implementation on the p4-capable device,” in Proc. of IFIP/IEEE Sym. on INSM, 
Arlington, VA, USA, pp. 1-9, 2019. Article (CrossRef Link) 

[34] K. Zhang, D. Zhuo, and A. Krishnamurthy, “Gallium: Automated software middlebox offloading 
to programmable switches,” in Proc. of Ann. Conf. of the ACM on SIGCOMM, New YorkNY, 
United States, pp. 283-295, 2020. Article (CrossRef Link) 

[35] X. Chen, Q. Huang, P. Wang, Z. Meng, H. Liu, Y. Chen, D. Zhang, H. Zhou, B. Zhou, and C. Wu, 
“Lightnf: Simplifying network function offloading in programmable networks,” in Proc. of 
IEEE/ACM 29th Int. Sym. on IWQOS, Tokyo, Japan, pp. 1-10, 2021. Article (CrossRef Link) 

[36] X. Chen, H. Liu, D. Zhang, Q. Huang, H. Zhou, C. Wu, and Q. Yang, “Empowering DDoS Attack 
Mitigation with Programmable Switches,” IEEE Network, pp. 1-7, 2022. Article (CrossRef Link) 

[37] A. M. Medhat, T. Taleb, A. Elmangoush, G. A. Carella, S. Covaci, and T. Magedanz, “Service 
function chaining in next generation networks: State of the art and research challenges,” IEEE 
Communications Magazine, vol. 55, no. 2, pp. 216-223, 2017. Article (CrossRef Link) 

[38] K. Kaur, V. Mangat, and K. Kumar, “A comprehensive survey of service function chain 
provisioning approaches in SDN and NFV architecture,” Computer Science Review, vol. 38, pp. 
100298, 2020. Article (CrossRef Link) 

[39] H. Hawilo, M. Jammal, and A. Shami, “Network function virtualization-aware orchestrator for 
service function chaining placement in the cloud,” IEEE Journal on Selected Areas in 
Communications, vol. 37, no. 3, pp. 643-655, 2019. Article (CrossRef Link) 

[40] X. Li, Y. Zhang, L. Xi, and D. Zhao, “Dynamic service function chain orchestration for NFV/MEC-
enabled IoT networks: A deep reinforcement learning approach,” IEEE Internet of Things Journal, 
vol. 8, no. 9, pp. 7450-7465, 2021. Article (CrossRef Link) 

[41]  D. Zhao, Y. Lu, X. Li, Z. Li, and Y. Liu, “Cross-Domain Service Function Chain Routing: 
Multiagent Reinforcement Learning Approaches,” IEEE Transactions on Circuits and Systems II: 
Express Briefs, vol. 69, no. 12, pp. 4754-4758, 2022. Article (CrossRef Link) 

[42] J. Zhang, Y. Liu, Z. Li, and Y. Lu, “Forecast-Assisted Service Function Chain Dynamic 
Deployment for SDN/NFV-Enabled Cloud Management Systems,” IEEE Systems Journal, pp. 1-
12, 2023. Article (CrossRef Link) 

[43] S. R. Chowdhury, H. Bian, T. Bai, and R. Boutaba, “A disaggregated packet processing 
architecture for network function virtualization,” IEEE Journal on Selected Areas in 
Communications, vol. 38, no. 6, pp. 1075-1088, 2020. Article (CrossRef Link) 

[44] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The Click modular router,” ACM 
Transactions on Computer Systems, vol. 18, no. 3, pp. 263-297, 2000. Article (CrossRef Link) 

https://doi.org/10.1109/CCNC.2019.8651729
https://doi.org/10.1016/j.jnca.2021.103196
https://doi.org/10.1109/TPDS.2020.3017001
https://doi.org/10.1007/s00607-021-00925-x
https://doi.org/10.1109/MCOM.2015.7045396
https://doi.org/10.1109/MNET.2014.6963800
https://doi.org/10.1109/TNET.2018.2877700
https://ieeexplore.ieee.org/abstract/document/8717843
https://doi.org/10.1145/3387514.3405869
https://doi.org/10.1109/IWQOS52092.2021.9521329
https://doi.org/10.1109/MNET.107.2100643
https://doi.org/10.1109/MCOM.2016.1600219RP
https://doi.org/10.1016/j.cosrev.2020.100298
https://doi.org/10.1109/JSAC.2019.2895226
https://doi.org/10.1109/JIOT.2020.3038793
https://doi.org/10.1109/TCSII.2022.3183345
https://doi.org/10.1109/JSYST.2023.3263865
https://doi.org/10.1109/JSAC.2020.2986611
https://doi.org/10.1145/354871.354874


1914                                                                                                     Zhao et al.: AP-SDN: Action Program enabled  
Software-Defined Networking Architecture 

[45] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme, J. Gross, A. Wang, J. Stringer, 
and P. Shelar, “The design and implementation of open vswitch,” in Proc. of 12th USENIX Sym. 
on NSDI, Oakland, CA, USA, pp. 117-130, 2015. Article (CrossRef Link) 

[46] W. Tu, Y.-H. Wei, G. Antichi, and B. Pfaff, “revisiting the open vSwitch dataplane ten years later,” 
in Proc. of the 2021 ACM SIGCOMM 2021 Conference, Virtual Event, USA,  pp. 245–257, 2021. 
Article (CrossRef Link) 

[47] E. L. Fernandes, E. Rojas, J. Alvarez-Horcajo, Z. L. Kis, D. Sanvito, N. Bonelli, C. Cascone, and 
C. E. Rothenberg, “The road to BOFUSS: The basic OpenFlow userspace software switch,” 
Journal of Network and Computer Applications, vol. 165, pp. 102685, 2020.  
Article (CrossRef Link) 

[48] M. Shahbaz, S. Choi, B. Pfaff, C. Kim, N. Feamster, N. McKeown, and J. Rexford, “Pisces: A 
programmable, protocol-independent software switch,” in Proc. of Conf. of the ACM on 
SIGCOMM, Florianopolis, Brazil, pp. 525-538, 2016. Article (CrossRef Link) 

[49] T. Osiński, H. Tarasiuk, P. Chaignon, and M. Kossakowski, “P4rt-OVS: Programming Protocol-
Independent, Runtime Extensions for Open vSwitch with P4,” in Proc. of Conf. of the IFIP 
Networking, Paris, France, pp. 413-421, 2020. Article (CrossRef Link) 

[50] S. McCanne, and V. Jacobson, “The BSD Packet Filter: A New Architecture for User-level Packet 
Capture,” in Proc. of Conf. of the USENIX, San Diego, CA, pp. 1-11, 1993. Article (CrossRef Link) 

[51] T. Osiński, J. Palimąka, M. Kossakowski, F. D. Tran, E.-F. Bonfoh, and H. Tarasiuk, “A novel 
programmable software datapath for software-defined networking,” in Proc. of the 18th Int. Conf. 
on CoNEXT, Roma, Italy, pp. 245-260, 2022. Article (CrossRef Link) 

[52] K. Morita, I. Yamahata, and V. Linux, “Ryu: Network operating system,” in Proc. of OpenStack 
Design Summit & Conference, 2012. Article (CrossRef Link) 

[53] M. Zhang, G. Li, S. Wang, C. Liu, A. Chen, H. Hu, G. Gu, Q. Li, M. Xu, and J. Wu, “Poseidon: 
Mitigating volumetric ddos attacks with programmable switches,” in Proc. of Sym. on NDSS, San 
Diego, CA, USA, pp.1-18, 2020. Article (CrossRef Link) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://www.usenix.org/system/files/conference/nsdi15/nsdi15-paper-pfaff.pdf
https://doi.org/10.1145/3452296.3472914
https://doi.org/10.1016/j.jnca.2020.102685
https://doi.org/10.1145/2934872.2934886
https://ieeexplore.ieee.org/abstract/document/9142794
https://vodun.org/papers/net-papers/van_jacobson_the_bpf_packet_filter.pdf
https://doi.org/10.1145/3555050.3569117
https://ryu-sdn.org/slides/LinuxConJapan2012.pdf
https://par.nsf.gov/servlets/purl/10176415


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 7, July 2023                                    1915 

Zheng Zhao received his B.S. degree from Dalian University of Technology in 2010. He 
received his M.S. and Ph.D degrees from Zhengzhou Science and Technology Institute in 
2013 and 2017. Now he is working at College of Artificial Intelligence, Dalian Maritime 
University. His research interests include network security, next generation Internet and deep 
learning. 
 
 
 
 

 
Xiaoya Fan received her M.S. degree in biomedical engineering from Beihang University 
in 2014 and Ph.D.degree from the Université libre de Bruxelles in 2018. She is currently an 
assistant professor with the School of Software, Dalian University of Technology. Her current 
research interests include network analysis and machine learning. 
 
 
 
 
 

 
Xin Xie received his B.S., M.S. and Ph.D degrees from Zhengzhou Science and Technology 
Institute in 2008, 2011 and 2015. Now he is working at School of Computer Science and 
Engineering, Hunan University of Information Technology. His research interests include 
software security, deep learning and intelligent imaging technology. 
 
 
 
 
 

 
Qian Mao is a lecture of Light Industry College of Liaoning University. Her research 
focuses on data analysis. 
 
 
 
 
 
 
 

 
Qi Zhao is an assistant professor of College of Medicine and Biological Information 
Engineering of Northeastern University. His research focuses on network security, 
application of deep learning, and bioinformatics. 


