DOI QR코드

DOI QR Code

PET 섬유 보강재를 사용한 섬유 보강 콘크리트의 성능 평가에 관한 연구

A study on performance evaluation of fiber reinforced concrete using PET fiber reinforcement

  • Ri-On Oh (Institute of Technology, CONTECH ENG Co., Ltd.) ;
  • Yong-Sun Ryu (Chemiuskorea Co., Ltd.) ;
  • Chan-Gi Park (Dept. of Regional Construction Engineering, Kongju National University) ;
  • Sung-Ki Park (CONTECH ENG Co., Ltd.)
  • 투고 : 2023.05.04
  • 심사 : 2023.06.28
  • 발행 : 2023.07.31

초록

본 연구는 최근 섬유 보강 콘크리트의 성능 보강재료 적용이 검토되고 있는 합성섬유 종류 중 PET (Polyethylene terephthalate) 섬유 보강재에 대하여 단기 및 장기 성능변화 여부 검토를 통해 PET 섬유의 성능 안정성을 검토하고자 하였다. 이를 위하여 PET 섬유를 산/알칼리 환경에 노출시킨 후 잔류 성능을 분석하였으며, PET 섬유 보강 콘크리트 배합의 재령별 휨강도, 등가 휨강도, 그리고 콘크리트 시편에서 채취한 PET 섬유를 주사현미경(SEM)을 이용하여 표면의 변화를 분석하였다. PET 섬유의 산/알칼리 환경 노출 실험결과, 산성 환경에서는 83.4~96.4%, 알칼리 환경에서는 42.4~97.9%의 강도 보유율을 나타내었다. 섬유 자체의 강도 보유율은 고온의 강알칼리 조건에 노출될 경우 강도 감소가 크게 발생하는 것을 확인할 수 있었으며, 강도 보유율은 에폭시로 코팅된 가공사에서 강도보유율이 증가하는 것으로 나타났다. PET 섬유 보강 콘크리트 배합의 휨강도 및 등가 휨강도 실험결과에서는 휨강도 저하가 나타나지 않았으며, 등가 휨강도 결과도 섬유 보강재로써의 성능 저하는 나타나지 않았다. SEM 분석 결과에서도 PET 보강 섬유의 표면 손상이나 단면 변화가 관찰되지 않았다. 이와 같은 결과는 섬유 보강 콘크리트가 초기 고온 노출되는 경우나 재령 경과에 따라서도 시멘트 콘크리트 환경에서는 PET 보강 섬유가 어떠한 손상이나 단면 감소가 발생하지 않는다는 것을 의미하며, 시멘트 콘크리트 환경에서는 PET 섬유에 대한 강도 감소 영향은 우려하지 않아도 된다는 것으로 판단된다. 재령에 따른 휨강도, 등가 휨강도도 안정적으로 발현됨에 따라 PET 섬유 보강재의 사용으로 우려되는 가수분해로 인한 성능저하 등이 발생하지 않는 것으로 볼 수 있으며, 안정적인 잔류강도 보유 특성을 나타내는 것을 확인하였다.

This study aimed to review the performance stability of PET (Polyethylene terephthalate) fiber reinforcing materials among the synthetic fiber types for which the application of performance reinforcing materials to fiber-reinforced concrete is being reviewed by examining short-term and long-term performance changes. To this end, the residual performance was analyzed after exposing the PET fiber to an acid/alkali environment, and the flexural strength and equivalent flexural strength of the PET fiber-reinforced concrete mixture by age were analyzed, and the surface of the PET fiber collected from the concrete specimen was examined using a scanning microscope (SEM). The changes in were analyzed. As a result of the acid/alkali environment exposure test of PET fiber, the strength retention rate was 83.4~96.4% in acidic environment and 42.4~97.9% in alkaline environment. It was confirmed that the strength retention rate of the fiber itself significantly decreased when exposed to high-temperature strong alkali conditions, and the strength retention rate increased in the finished yarn coated with epoxy. In the test results of the flexural strength and equivalent flexural strength of the PET fiber-reinforced concrete mixture, no reduction in flexural strength was found, and the equivalent flexural strength result also did not show any degradation in performance as a fiber reinforcement. Even in the SEM analysis results, no surface damage or cross-sectional change of the PET reinforcing fibers was observed. These results mean that no damage or cross-section reduction of PET reinforcing fibers occurs in cement concrete environments even when fiber-reinforced concrete is exposed to high temperatures in the early stage or depending on age, and the strength of PET fibers decreases in cement concrete environments. The impact is judged to be of no concern. As the flexural strength and equivalent flexural strength according to age were also stably expressed, it could be seen that performance degradation due to hydrolysis, which is a concern due to the use of PET fiber reinforcing materials, did not occur, and it was confirmed that stable residual strength retention characteristics were exhibited.

키워드

참고문헌

  1. ASTM C 1609 (2020), Standard test method for flexural performance of fiber-reinforced concrete (using beam with third-point loading), ASTM International, pp. 1-9.
  2. ASTM D 5322-17 (2017), Standard practice for laboratory immersion procedures for evaluating the chemical resistance of geosynthetics to liquids, ASTM International, pp. 1-4.
  3. Ha, T.W., Yang, H.S. (2004), "Development of polypropylene fiber for shotcrete", Tunnel and Underground Space, Vol. 14, No. 4, pp. 241-247.
  4. Kang, Y.T., Kim, G.Y., Lee, B.K., Lee, S.K., Kim, G.T., Nam, J.S. (2017), "Flexural behavior of fiber-reinforced concrete by fiber types", Proceedings of the Korean Institute of Building Construction Conference, Vol. 17, No. 11a, Busan, pp. 15-16.
  5. Kim, S.B., Kim, H.Y., Yi, N.H., Kim, J.H. (2010), "Strength and crack resistance properties of fiber reinforced concrete mixed with recycled PET fiber", Journal of the Korea Institute for Structural Maintenance and Inspection, Vol. 14, No. 1, pp. 102-108. https://doi.org/10.11112/JKSMI.2010.14.1.102
  6. Korea Expressway Corporation (2023), Highway construction material quality standards.
  7. Ku, D.O., Kim, S.D., Kim, H.S., Choi, K.K. (2014), "Flexural performance characteristics of amorphous steel fiber-reinforced concrete", Journal of the Korea Concrete Institute, Vol. 26, No. 4, pp. 483-489. https://doi.org/10.4334/JKCI.2014.26.4.483
  8. Moon, K.S., Kim, S.J., Kim, Y.D., Min, B.H., Kim, S.H. (2019), "A study on evaluation of flexural toughness of synthetic fiber reinforced shotcrete", Journal of Korean Tunnelling and Underground Space Association, Vol. 21, No. 3, pp. 433-452. https://doi.org/10.9711/KTAJ.2019.21.3.433
  9. Yoon, J.H., Jeon, J.K., Jeon, C.K., Lee, S.C. (2012), "Experimental construction of polyamide fiber reinforced shotcrete technology", Journal of the Korean Recycled Construction Resources Institute, Vol. 7, No. 2, pp. 78-83.