Acknowledgement
The authors thank the main editor and anonymous referees for their valuable comments and suggestions leading to improvement of this paper. This research work was funded by Higher Education Commission (HEC) Pakistan under NRPU Project No. 20-16985/NRPU/R\&D/HEC/2021.
References
- Abraham, N., Lugiato, L. and Narducci, L. (1985), "Overview of instabilities in laser systems", JOSA B., 2(1), 7-14. https://doi.org/10.1364/JOSAB.2.000007.
- Atabakhshian, V. and Shooshtaria, A. (2020), "A study on the dynamic instabilities of a smart embedded micro-shell induced by a pulsating flow: A nonlocal piezoelastic approach", Adv. Nano Res., 9(3), 133-145. https://doi.org/10.12989/anr.2020.9.3.133.
- Barakat, E., Abdel-Aty, M. and El-Kalla, I. (2021), "Hyperchaotic and quasiperiodic behaviors of a two-photon laser with multi-intermediate states", Chaos Soliton Fract., 152, 111316. https://doi.org/10.1016/j.chaos.2021.111316.
- Bonatto, C. (2018), "Hyperchaotic dynamics for light polarization in a laser diode", Phys. Rev. Lett., 120(16), 163902. https://doi.org/10.1103/PhysRevLett.120.163902.
- Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Tounsi, A. and Mahmoud, S. (2019), "Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., 7(3), 191. https://doi.org/10.12989/anr.2019.7.3.191.
- Camouzis, E. and Ladas, G. (2007), Dynamics of Third-Order Rational Difference Equations with Open Problems and Conjectures, Chapman and Hall/CRC. https://doi.org/10.1201/9781584887669.
- Castillo-Chavez, C. and Yakubu, A.-A. (2001), "Discrete-time SIS models with complex dynamics", Nonlinear Anal. Theor., 47(7), 4753-4762. https://doi.org/10.1016/S0362-546X(01)00587-9.
- Chang, W.D. (2009), "Digital secure communication via chaotic systems", Digit. Signal Proc., 19(4), 693-699. https://doi.org/10.1016/j.dsp.2008.03.004.
- Copeland, G. and Moon, F. (1992), "Chaotic flow-induced vibration of a flexible tube with end mass", J. Fluid Struct., 6(6), 705-718. https://doi.org/10.1016/0889-9746(92)90004-M.
- Din, Q. (2017a), "Complexity and chaos control in a discrete-time prey-predator model", Commun. Nonlinear Sci. Numer. Simul., 49, 113-134. https://doi.org/10.1016/j.cnsns.2017.01.025.
- Din, Q. (2017b), "Neimark-Sacker bifurcation and chaos control in Hassell-Varley model", J. Differ. Equ. Appl., 23(4), 741-762. https://doi.org/10.1080/10236198.2016.1277213.
- Din, Q. (2018), "Bifurcation analysis and chaos control in discrete-time glycolysis models", J. Math. Chem., 56(3), 904-931. https://doi.org/10.1007/s10910-017-0839-4.
- Din, Q., Donchev, T. and Kolev, D. (2018), "Stability, bifurcation analysis and chaos control in chlorine dioxide-iodine-malonic acid reaction", MATCH Commun. Math. Comput. Chem., 79(3), 577-606. ISSN 0340 - 6253.
- Din, Q., Elsadany, A. and Khalil, H. (2017), "Neimark-Sacker bifurcation and chaos control in a fractional-order plant-herbivore model", Discrete Dyn. Nature Soc., 2017. https://doi.org/10.1155/2017/6312964.
- Din, Q., Gumus, O .A. and Khalil, H. (2017), "Neimark-sacker bifurcation and chaotic behaviour of a modified host-parasitoid model", Zeitschrift fur Naturforschung A, 72(1), 25-37. https://doi.org/10.1515/zna-2016-0335.
- Din, Q. and Ishaque, W. (2020), "Bifurcation analysis and chaos control in discrete-time eco-epidemiological models of pelicans at risk in the Salton Sea", Int. J. Dyn. Control, 8(1), 132-148. https://doi.org/10.1007/s40435-019-00508-x.
- Din, Q. and Zulfiqar, M.A. (2022), "Qualitative behavior of a discrete predator-prey system under fear effects", Zeitschrift fur Naturforschung A, 77(11), 1023-1043. https://doi.org/10.1515/zna-2022-0129.
- Franke, J.E. and Yakubu, A.A. (2008), "Disease-induced mortality in density-dependent discrete-time SIS epidemic models", J. Math. Biol., 57(6), 755-790. https://doi.org/10.1007/s00285-008-0188-9.
- Gang, L. (2007), "Chaos synchronization between single-mode laser lorenz system and 3D chaotic system", Acta Photonica Sinca, 5(36). https://doi.org/10.1016/j.chaos.2004.03.038.
- Ghaziani, R.K., Govaerts, W. and Sonck, C. (2012), "Resonance and bifurcation in a discrete-time predator-prey system with Holling functional response", Nonlinear Anal., 13(3), 1451-1465. https://doi.org/10.1016/j.nonrwa.2011.11.009.
- Gleick, J. and Berry, M. (1987), "Chaos-making a new Science", Nature, 330, 293.
- Grzybowski, J., Rafikov, M. and Balthazar, J.M. (2009), "Synchronization of the unified chaotic system and application in secure communication", Commun. Nonlinear Sci. Numer. Simul., 14(6), 2793-2806. https://doi.org/10.1016/j.cnsns.2008.09.028.
- Haken, H. (1975), "Analogy between higher instabilities in fluids and lasers", Phys. Lett. A, 53(1), 77-78. https://doi.org/10.1016/0375-9601(75)90353-9.
- Harris, D., Machavaram, V. and Fernando, G. (2010), Process Monitoring and Damage Detection Using Optical Fibre Sensors, Woodhead Publishing Series in Composites Science and Engineering, 2010, 369-424. https://doi.org/10.1533/9781845697662.4.369.
- He, Z. and Lai, X. (2011), "Bifurcation and chaotic behavior of a discrete-time predator-prey system", Nonlinear Anal. Real World Appl., 12(1), 403-417. https://doi.org/10.1016/j.nonrwa.2010.06.026.
- Hikihara, T., Holmes, P., Kambe, T. and Rega, G. (2012), "Introduction to the focus issue: Fifty years of chaos: Applied and theoretical", Chao Interdisciplin. J. Nonlinear Sci., 22, 047501. https://doi.org/10.1063/1.4769035.
- Hilborn, R.C. (2000), Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers, Oxford University Press on Demand.
- Hu, Z., Teng, Z. and Zhang, L. (2011), "Stability and bifurcation analysis of a discrete predator-prey model with nonmonotonic functional response", Nonlinear Anal. Real World Appl., 12(4), 2356-2377. https://doi.org/10.1016/j.nonrwa.2011.02.009.
- Illing, L. (2009), "Digital communication using chaos and nonlinear dynamics", Nonlinear Anal. Real World Appl., 71(12), e2958-e2964. https://doi.org/10.1016/j.na.2009.07.007.
- Ishaque, W., Din, Q. and Taj, M. (2021), "Mutual interference and its effects on searching efficiency between predator-prey interaction with bifurcation analysis and chaos control", J. Vib. Control, 10775463211056475. https://doi.org/10.1177/10775463211056475.
- Ishaque, W., Din, Q., Taj, M. and Iqbal, M.A. (2019), "Bifurcation and chaos control in a discrete-time predator-prey model with nonlinear saturated incidence rate and parasite interaction", Adv. Differ. Equ., 2019(1), 1-16. https://doi.org/10.1186/s13662-019-1973-z.
- Li, A.W. (2011), "Impact of noise on pattern formation in a predator-prey model", Nonlinear Dyn., 66(4), 689-694. https://doi.org/10.1007/s11071-010-9941-x.
- Li, Z. and Xu, D. (2004), "A secure communication scheme using projective chaos synchronization", Chaos Soliton Fract., 22(2), 477-481. https://doi.org/10.1016/j.chaos.2004.02.019.
- Li, Z. and Xu, W. (2011), "Reduced order anti-synchronization between single model laser Lorenz system and Duffing system", J. Appl. Opt., 32, 358-362.
- Li, Z. and Zhang, Z. (2011). "Secure communication scheme with hyper-chaotic Lorenz-Stenflo system", 2011 International Conference on Electronics, Communications and Control (ICECC). https://doi.org/10.1109/ICECC.2011.6066306.
- Liao, G. and Bose, A. (2022), "Entrainment within hierarchical circadian oscillator networks", Math. Biosci., 351, 108883. https://doi.org/10.1016/j.mbs.2022.108883.
- Liao, G., Diekman, C. and Bose, A. (2020), "Entrainment dynamics of forced hierarchical circadian systems revealed by 2-dimensional maps", SIAM J. Appl. Dyn. Syst., 19(3), 2135-2161. https://doi.org/10.1137/19M1307676.
- Ling, L., Chengren, L. and Boqiao, C. (1998), "Theoretical research of chaotic behavior about single mode laser", Opt. Tech., 2, 35-43.
- Liu, X. (1994), "Stability results for impulsive differential systems with applications to population growth models", Dyn. Stabil. Syst., 9(2), 163-174. https://doi.org/10.1080/02681119408806175.
- Luo, X.S., Chen, G., Wang, B.H. and Fang, J.Q. (2003), "Hybrid control of period-doubling bifurcation and chaos in discrete nonlinear dynamical systems", Chaos Soliton Fract., 18(4), 775-783. https://doi.org/10.1016/S0960-0779(03)00028-6.
- Matouk, A.E., Elsadany, A., Ahmed, E. and Agiza, H. (2015), "Dynamical behavior of fractional-order Hastings-Powell food chain model and its discretization", Commun. Nonlinear Sci. Numer. Simul., 27(1-3), 153-167. https://doi.org/10.1016/j.cnsns.2015.03.004.
- Miles, P.A. (1964). "Quantum electronics and coherent light". Int. School Phys. Enrico Fermi, 150(3695), 479. https://doi.org/10.1126/science.150.3695.479.b
- Milonni, P.W., Shih, M. and Ackerhalt, J.R. (1987), Chaos in Laser-Matter Interactions, World Scientific Publishing Company. https://doi.org/10.1126/science.150.3695.479.b.
- Narducci, L.M. and Abraham, N.B. (1988), Laser Physics and Laser Instabilities, World Scientific, Hong Kong, Singapore.
- Ozturk, O. (2017), "On the existence of nonoscillatory solutions of three-dimensional time scale systems", J. Fix. Point Theor. Appl., 19(4), 2617-2628. https://doi.org/10.1007/s11784-017-0454-9
- Pecora, L.M. and Carroll, T.L. (1990), "Synchronization in chaotic systems", Phys. Rev. Lett., 64(8), 821. https://doi.org/10.1103/PhysRevLett.64.821.
- Taj, M., Khadimallah, M.A., Hussain, M., Rashid, Y., Ishaque, W., Mahmoud, S., Din, Q., Alwabli, A.S. and Tounsi, A. (2021), "Discretization and bifurcation analysis of tumor immune interaction in fractional form", Adv. Nano Res., 10(4), 359. https://doi.org/10.12989/anr.2021.10.4.359.
- Wang, X. and Wang, Y. (2011), "Adaptive control for synchronization of a four-dimensional chaotic system via a single variable", Nonlinear Dyn., 65(3), 311-316. https://doi.org/10.1007/s11071-010-9893-1.
- Weiss, C., Vilaseca, R., Abraham, N., Corbalan, R., Roldan, E., de Valcarcel, G., Pujol, J., Hubner, U. and Tang, D. (1995), "Models, predictions, and experimental measurements of far-infrared NH3-laser dynamics and comparisons with the Lorenz-Haken model", Appl. Phys. B, 61(3), 223-242. https://doi.org/10.1007/BF01082041.
- Wen, G. (2005), "Criterion to identify Hopf bifurcations in maps of arbitrary dimension", Phys. Rev. E, 72(2), 026201. https://doi.org/10.1103/PhysRevE.72.026201.
- Wen, G., Chen, S. and Jin, Q. (2008), "A new criterion of period-doubling bifurcation in maps and its application to an inertial impact shaker", J. Sound Vib., 311(1-2), 212-223. https://doi.org/10.1016/j.jsv.2007.09.003.
- Willox, R., Grammaticos, B., Carstea, A. and Ramani, A. (2003), "Epidemic dynamics: discrete-time and cellular automaton models", Physica A, 328(1-2), 13-22. https://doi.org/10.1016/S0378-4371(03)00552-1.
- Xie, Q., Chen, G. and Bollt, E.M. (2002), "Hybrid chaos synchronization and its application in information processing", Math. Comput. Modell., 35(1-2), 145-163. https://doi.org/10.1016/S0895-7177(01)00157-1.
- Yu, W., Cao, J., Wong, K.W. and Lu, J. (2007), "New communication schemes based on adaptive synchronization", Chaos Interdiscipl. J. Nonlinear Sci., 17(3), 033114. https://doi.org/10.1063/1.2767407.
- Zhang, L., Xu, Y. and Liao, G. (2022), "Codimension-two bifurcations and bifurcation controls in a discrete biological system with weak allee effect", Int. J. Bifurcat. Chaos, 32, 2250036-2250164. https://doi.org/10.1142/S0218127422500365.
- Zhang, Q., Liu, J. and Luo, Z. (2015), "Dynamical behavior of a system of third-order rational difference equation", Discrete Dyn. Nature Soc., 2015. https://doi.org/10.1155/2015/530453.