참고문헌
- Apuzzo, A., Barretta, R., Luciano, R., De Sciarra, F.M. and Penna, R. (2017), "Free vibrations of Bernoulli-Euler nano-beams by the stress-driven nonlocal integral model". Compos. Part B Eng., 123, 105-111, https://doi.org/10.1016/j.compositesb.2017.03.057
- Bergman, R.M. (1968), "Asymptotic analysis of some plane problems of the theory op elasticity with couple stresses". J. Appl. Math. Mech., 32(6), 1085-1090. https://doi.org/10.1016/0021-8928(68)90035-X
- Bert, C.W. and Malik, M. (1996), "Differential quadrature method in computational mechanics: A review", ASME. Appl. Mech. Rev., 49(1), 1-28. https://doi.org/10.1115/1.3101882
- Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A. and Benzair, A. (2015), "Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix", Adv. Nano Res., 3(1), 029. https://doi.org/10.12989/anr.2015.3.1.029
- Chaht, F.L., Kaci, A., Houari, M.S.A., Tounsi, A., Beg, O.A. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425
- Challamel, N., Zhang, Z., Wang, C.M., Reddy, J.N., Wang, Q., Michelitsch, T. and Collet, B. (2014), "On nonconservativeness of Eringen's nonlocal elasticity in beam mechanics: correction from a discrete-based approach", Arch. Appl. Mech., 84(9), 1275-1292. https://doi.org/10.1007/s00419-014-0862-x
- Civalek, O . and Numanoglu, H.M. (2020), "Nonlocal finite element analysis for axial vibration of embedded love-bishop nanorods", Int. J. Mech. Sci., 188, 105939. https://doi.org/10.1016/j.ijmecsci.2020.105939
- Eltaher, M.A., Emam, S.A. and Mahmoud, F.F. (2012), "Free vibration analysis of functionally graded size-dependent nanobeams", Applied Math. Comput., 218(14), 7406-7420. https://doi.org/10.1016/j.amc.2011.12.090
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
- Eringen, A.C. (1984), "Theory of nonlocal elasticity and some applications", Res. Mech., 21(4), 313-342. https://doi.org/10.21236/ada145201
- Eringen, A.C. and Wegner, J.L. (2003), "Nonlocal continuum field theories", Appl. Mech. Rev., 56(2), B20-B22. https://doi.org/10.1115/1.1553434
- Fernandez-Saez, J., Zaera, R., Loya, J.A. and Reddy, J. (2016), "Bending of Euler-Bernoulli beams using Eringen's integral formulation: a paradox resolved", Int. J. Eng. Sci., 99, 107-116. https://doi.org/10.1016/j.ijengsci.2015.10.013
- Fleck, N.A., Muller, G.M., Ashby, M.F. and Hutchinson, J.W. (1994), "Strain gradient plasticity: theory and experiment", Acta Metallurgica et Materialia, 42(2), 475-487. https://doi.org/10.1016/0956-7151(94)90502-9
- Hosseini, S.A., Khosravi, F. and Ghadiri, M. (2020), "Moving axial load on dynamic response of single-walled carbon nanotubes using classical, Rayleigh and Bishop rod models based on Eringen's theory", J. Vib. Control, 26(11-12), 913-928. https://doi.org/10.1177/1077546319890170
- Hsu, J.C., Lee, H.L. and Chang, W.J. (2011), "Longitudinal vibration of cracked nanobeams using nonlocal elasticity theory", Curr. Appl. Phys., 11(6), 1384-1388. https://doi.org/10.1016/j.cap.2011.04.026
- Jalaei, M.H., Thai, H.T. and Civalek, Ӧ. (2022), "On viscoelastic transient response of magnetically imperfect functionally graded nanobeams", Int. J. Eng. Sci., 172, 103629. https://doi.org/10.1016/j.ijengsci.2022.103629
- Khaniki, H.B. (2018), "On vibrations of nanobeam systems", Int. J. Eng. Sci., 124, 85-103. https://doi.org/10.1016/j.ijengsci.2017.12.010
- Lam, D.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X
- Lei, Y., Adhikari, S. and Friswell, M.I. (2013), "Vibration of nonlocal Kelvin-Voigt viscoelastic damped Timoshenko beams", Int. J. Eng. Sci., 66, 1-13. https://doi.org/10.1016/j.ijengsci.2013.02.004
- Li, H.B. and Wang, X. (2012), "Effect of small scale on the dynamic characteristic of carbon nanotubes under axially oscillating loading", Physica E, 46, 198-205. https://doi.org/10.1016/j.physe.2012.09.015
- Lim, C.W., Zhang, G. and Reddy, J. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001
- Lin, F., Tong, L.H., Shen, H.S., Lim, C.W. and Xiang, Y. (2020), "Assessment of first and third order shear deformation beam theories for the buckling and vibration analysis of nanobeams incorporating surface stress effects", Int. J. Mech. Sci., 186, 105873. https://doi.org/10.1016/j.ijmecsci.2020.105873
- Lu, L., Guo, X. and Zhao, J. (2017), "A unified nonlocal strain gradient model for nanobeams and the importance of higher order terms". Int. J. Eng. Sci., 119, 265-277. https://doi.org/10.1016/j.ijengsci.2017.06.024
- Mashat, D.S., Zenkour, A.M. and Sobhy, M. (2016), "Investigation of vibration and thermal buckling of nanobeams embedded in an elastic medium under various boundary conditions", J. Mech., 32(3), 277-287. https://doi.org/10.1017/jmech.2015.83
- Mirafzal, A. and Fereidoon, A. (2017), "Dynamic characteristics of temperature-dependent viscoelastic FG nanobeams subjected to 2D-magnetic field under periodic loading", Appl. Phys. A, 123(4), 1-13. https://doi.org/10.1007/s00339-017-0829-1
- Naderi, A., Behdad, S., Fakher, M. and Hosseini-Hashemi, S. (2020), "Vibration analysis of mass nanosensors with considering the axial-flexural coupling based on the two-phase local/nonlocal elasticity", Mech. Syst. Signal Pr., 145, 106931. https://doi.org/10.1016/j.ymssp.2020.106931
- Nazemnezhad, R. and Kamali, K. (2018), "Free axial vibration analysis of axially functionally graded thick nanorods using nonlocal Bishop's theory", Steel Compos. Struct., 28(6), 749-758. https://doi.org/10.12989/scs.2018.28.6.749
- Nazemnezhad, R. and Shokrollahi, H. (2022), "Axial frequency analysis of axially functionally graded Love-Bishop nanorods using surface elasticity theory", Steel Compos. Struct., 42(5), 699-710. https://doi.org/10.12989/scs.2022.42.5.699
- Numanoglu, H.M. and Civalek, O . (2019), "On the torsional vibration of nanorods surrounded by elastic matrix via nonlocal FEM", Int. J. Mech. Sci., 161, 105076. https://doi.org/10.1016/j.ijmecsci.2019.105076
- Numanoglu, H.M. and Civalek, O . (2022), "Novel size-dependent finite element formulation for modal analysis of cracked nanorods", Materials Today Commun., 31, 103545. https://doi.org/10.1016/j.mtcomm.2022.103545
- Numanoglu, H.M., Akgoz, B. and Civalek, O . (2018), "On dynamic analysis of nanorods", Int. J. Eng. Sci., 130, 33-50. https://doi.org/10.1016/j.ijengsci.2018.05.001
- Numanoglu, H.M., Ersoy, H., Akgoz, B. and Civalek, O . (2022), "A new eigenvalue problem solver for thermo-mechanical vibration of Timoshenko nanobeams by an innovative nonlocal finite element method", Math. Method Appl. Sci., 45(5), 2592-2614. https://doi.org/10.1002/mma.7942
- Polyanin, A.D. and Manzhirov, A.V. (2008), Handbook of Integral Equations, Chapman and Hall/CRC.
- Quan, J.R. and Chang, C.T. (1989), "New insights in solving distributed system equations by the quadrature method-I. Analysis", Comput. Chem. Eng., 13(7), 779-788. https://doi.org/10.1016/0098-1354(89)85051-3
- Rao, S.S. (2019), Vibration of Continuous Systems, John Wiley & Sons.
- Reddy, J. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004
- Shafiei, N., Mirjavadi, S.S., Afshari, B.M., Rabby, S. and Hamouda, A.M.S. (2017), "Nonlinear thermal buckling of axially functionally graded micro and nanobeams", Comp. Struct., 168, 428-439. https://doi.org/10.1016/j.compstruct.2017.02.048
- Shen, Y., Chen, Y. and Li, L. (2016), "Torsion of a functionally graded material", Int. J. Eng. Sci., 109, 14-28. https://doi.org/10.1016/j.ijengsci.2016.09.003
- Shu, C. and Richards, B.E. (1992), "Application of generalized differential quadrature to solve two-dimensional incompressible Navier-Stokes equations", Int. J. Numer. Method Fluids, 15(7), 791-798. https://doi.org/10.1002/fld.1650150704
- Simsek, M. and Yurtcu, H.H. (2013), "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory", Comp. Struct., 97, 378-386. https://doi.org/10.1016/j.compstruct.2012.10.038
- Thai, H.T. (2012), "A nonlocal beam theory for bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 52, 56-64. https://doi.org/10.1016/j.ijengsci.2011.11.011
- Wang, Y., Zhao, Y.B. and Wei, G.W. (2003), "A note on the numerical solution of high-order differential equations", J. Comput. Appl. Math., 159(2), 387-398. https://doi.org/10.1016/S0377-0427(03)00541-7
- Wang, Y.B., Zhu, X.W. and Dai, H.H. (2016), "Exact solutions for the static bending of Euler-Bernoulli beams using Eringen's two-phase local/nonlocal model", Aip Adv., 6(8), 085114. https://doi.org/10.1063/1.4961695
- Wu, T.Y. and Liu, G.R. (2000), "Application of generalized differential quadrature rule to sixth-order differential equations", Commun. Numer. Methods Eng., 16(11), 777-784. https://doi.org/10.1002/10990887(200011)16:11<777::AIDCNM375>3.0.CO;2-6
- Wu, T.Y. and Liu, G.R. (2001), "Free vibration analysis of circular plates with variable thickness by the generalized differential quadrature rule", Int. J. Solids Struct., 38(44-45), 7967-7980. https://doi.org/10.1016/S0020-7683(01)00077-4
- Zhang, G.Y. and Gao, X.L. (2020), "A new Bernoulli-Euler beam model based on a reformulated strain gradient elasticity theory", Math. Mech. Solids, 25(3), 630-643. https://doi.org/10.1177/1081286519886003
- Zhang, G.Y., Gao, X.L., Zheng, C.Y. and Mi, C.W. (2021), "A non-classical Bernoulli-Euler beam model based on a simplified micromorphic elasticity theory", Mech. Mater., 161, 103967. https://doi.org/10.1016/j.mechmat.2021.103967
- Zhao, X., Zheng, S. and Li, Z. (2020), "Effects of porosity and flexoelectricity on static bending and free vibration of AFG piezoelectric nanobeams", Thin Walled Struct., 151, 106754. https://doi.org/10.1016/j.tws.2020.106754
- Zhu, X. and Li, L. (2017), "Twisting statics of functionally graded nanotubes using Eringen's nonlocal integral model", Compos. Struct., 178, 87-96. https://doi.org/10.1016/j.compstruct.2017.06.067
- Zhu, X., Wang, Y. and Dai, H.H. (2017), "Buckling analysis of Euler-Bernoulli beams using Eringen's two-phase nonlocal model", Int. J. Eng. Sci., 116, 130-140. https://doi.org/10.1016/j.ijengsci.2017.03.008