과제정보
This work was supported by National Research Foundation of Korea (NRF) grants (Number 2020M3H4A3081895, 2022R1A2C1010353 and RS-2023-00247545) funded by the Korean government (MSIP). Further support was provided by the Industry Technology R&D program (20006511), funded By the Ministry of Trade, Industry & Energy (MOTIE, Korea).
참고문헌
- Ahn, S., Han, T.H., Maleski, K., Song, J., Kim, Y.H., Park, M.H., Zhou, H., Yoo, S., Gogotsi, Y., Lee, T.W. (2020), "A 2D titanium carbide MXene flexible electrode for high-efficiency light-emitting diodes", Adv. Mater., 32, 2000919. https://doi.org/10.1002/adma.202000919.
- Chen, J., Li, Z., Ni, F., Ouyang, W., Fang, X. (2020), "Bioinspired transparent MXene electrodes for flexible UV photodetectors", Mater. Horizons, 7, 1828-1833. https://doi.org/10.1039/d0mh00394h.
- Choi, S.H., Jung, K.Y., Kang, Y.C. (2015), "Amorphous GeOx-coated reduced graphene oxide balls with sandwich structure for long-life lithium-ion batteries", ACS Appl. Mater. Interf., 7, 13952-13959. https://doi.org/10.1021/acsami.5b02846.
- Cai, M., Feng, P., Yan, H., Li, Y., Song, S., Li, W., Li, H., Zhu, M. (2022), "Hierarchical Ti3C2Tx@MoS2 heterostructures: A first principles calculation and application in corrosion/wear protection", J. Mater. Sci., 116, 151-160. https://doi.org/10.1016/j.jmst.2021.11.026.
- Cai, M., Fan, X., Yan, H., Li, Y., Song, S., Li, W., Li. H., Lu. Z., Zhu, M. (2021), "In situ assemble Ti3C2Tx MXene@MgAl-LDH heterostructure towards anticorrosion and antiwear application", Chem. Eng. J., 419, 130050. https://doi.org/10.1016/j.cej.2021.130050.-2.
- Cai, M., Yan, H., Song, S., He, D., Lin, Q., Li, W., Fan, X., Zhu, M. (2022), "State-of-the-art progresses for Ti3C2Tx MXene reinforced polymer composites in corrosion and tribology aspects", Adv. Colloid Interf. Sci., 309, 102790. https://doi.org/10.1016/j.cis.2022.102790.-3.
- Dall'Agnese, Y., Lukatskaya, M.R., Cook, K.M., Taberna, P.L., Gogotsi, Y., Simon, P. (2014), "high capacitance of surface-modified 2D titanium carbide in acidic electrolyte", Electrochem. Commun., 48, 118-122. https://doi.org/10.1016/j.elecom.2014.09.002.
- Dong, Y., Zheng, S., Qin, J., Zhao, X., Shi, H., Wang, X., Chen, J., Wu, Z.S. (2018), "All-MXene-based integrated electrode constructed by Ti3C2 nanoribbon framework host and nanosheet interlayer for high-energy-Density Li-S batteries", ACS Nano, 12, 2381-2388. https://doi.org/10.1021/acsnano.7b07672.
- Fan, X., Yan, H., Cai, M., Song, S., Huang, Y., Zhu, M. (2022), "Achieving parallelly-arranged Ti3C2Tx in epoxy coating for anti-corrosive/wear high-efficiency protection", Compos. B. Eng., 231, 109581. https://doi.org/10.1016/j.compositesb.2021.109581.
- Fan, X., Yang, Y., Shi, X., Liu, Y., Li, H., Liang, J., Chen, Y. (2020), "A MXene-based hierarchical design enabling highly efficient and stable solar-water desalination with good salt resistance", Adv. Funct. Mater., 30, 2007110. https://doi.org/10.1002/adfm.202007110.
- Fan, Z., Wang, Y., Xie, Z., Xu, X., Yuan, Y., Cheng, Z., Liu, Y. (2018), "A nanoporous MXene film enables flexible supercapacitors with high energy storage", Nanoscale, 10, 9642-9652. https://doi.org/10.1039/c8nr01550c.
- Feng, P., Ren, Y., Li, Y., He, J., Zhao, Z., Ma, X., Fan, X., Zhu, M. (2022), "Synergistic lubrication of few-layer Ti3C2Tx/MoS2 heterojunction as a lubricant additive", Friction, 10, 2018-2032. https://doi.org/10.1007/s40544-021-0568-3.
- Gogotsi, Y., Anasori, B. (2019), "The Rise of MXenes", ACS Nano, 13, 8491-8494. https://doi.org/10.1021/acsnano.9b06394.
- Hu, M., Hu, T., Li, Z., Yang, Y., Cheng, R., Yang, J., Cui, C., Wang, X. (2018), "Surface functional groups and interlayer water determine the electrochemical capacitance of Ti3C2 Tx MXene", ACS Nano, 12, 3578-3586. https://doi.org/10.1021/acsnano.8b00676.
- Huang, Y., Yang, H., Zhang, Y., Zhang, Y., Wu, Y., Tian, M., Chen, P., Trout, R., Ma, Y., Wu, T.H., Wu, Y., Liu, N. (2019), "A Safe and Fast-Charging Lithium-Ion Battery Anode Using MXene Supported Li3VO4", J. Mater. Chem. A, 7, 11250-11256. https://doi.org/10.1039/c9ta02037c.
- Hwang, S.K., Kang, S. M., Rethinasabapathy, M., Roh, C., Huh, Y.S. (2020), "MXene: An emerging two-dimensional layered material for removal of radioactive pollutants", Chem. Eng. J., 397, 125428. https://doi.org/10.1016/j.cej.2020.125428.
- Ihsanullah, I. (2020), "Potential of MXenes in water desalination: Current status and perspectives", Nano-Micro Lett., 12, 72. https://doi.org/10.1007/s40820-020-0411-9.
- Iqbal, A., Sambyal, P., Koo, C.M. (2020), "2D MXenes for Electromagnetic Shielding: A Review", Adv. Funct. Mater., 30, 2000883. https://doi.org/10.1002/adfm.202000883.
- Jiang, Q., Kurra, N., Alhabeb, M., Gogotsi, Y., Alshareef, H. N. (2018), "All pseudocapacitive MXene-RuO2 asymmetric supercapacitors", Adv. Energy Mater., 8, 1703043. https://doi.org/10.1002/aenm.201703043.
- Kong, F., He, X., Liu, Q., Qi, X., Zheng, Y., Wang, R., Bai, Y. (2018), "Improving the electrochemical properties of MXene Ti3C2 multilayer for Li-Ion batteries by vacuum calcination", Electrochim. Acta, 265, 140-150. https://doi.org/10.1016/j.electacta.2018.01.196.
- Lee, Y., Kim, S.J., Kim, Y.J., Lim, Y., Chae, Y., Lee, B.J., Kim, Y.T., Han, H., Gogotsi, Y., Ahn, C.W. (2020), "Oxidation-Resistant Titanium Carbide MXene Films", J. Mater. Chem. A, 8, 573-581. https://doi.org/10.1039/c9ta07036b.
- Liu, J., Jiang, X., Zhang, R., Zhang, Y., Wu, L., Lu, W., Li, J., Li, Y., Zhang, H. (2019), "MXene-enabled electrochemical microfluidic biosensor: Applications toward multicomponent continuous monitoring in whole blood", Adv. Funct. Mater., 29, 1807326. https://doi.org/10.1002/adfm.201807326.
- Lu, M., Li, H., Han, W., Chen, J., Shi, W., Wang, J., Meng, X. M., Qi, J., Li, H., Zhang, B., Zhang, W., Zheng, W. (2019), "2D Titanium Carbide (MXene) electrodes with lower-f surface for high performance lithium-ion batteries", J. Energy Chem., 31, 148-153. https://doi.org/10.1016/j.jechem.2018.05.017.
- Lv, D., Gordin, M.L., Yi, R., Xu, T., Song, J., Jiang, Y. B., Choi, D., Wang, D. (2014), "GeOx/reduced graphene oxide composite as an anode for li-ion batteries: Enhanced capacity via reversible utilization of Li2O along with improved rate performance", Adv. Funct. Mater., 24, 1059-1066. https://doi.org/10.1002/adfm.201301882.
- Malik, R. (2018), "Maxing out water desalination with MXenes", Joule, 2, 591-593. https://doi.org/10.1016/j.joule.2018.04.001.
- Munir, S., Rasheed, A., Rasheed, T., Ayman, I., Ajmal, S., Rehman, A., Shakir, I., Agboola, P.O., Warsi, M.F. (2020), "Exploring the influence of critical parameters for the effective synthesis of high-quality 2D MXene", ACS Omega, 5, 26845-26854. https://doi.org/10.1021/acsomega.0c03970.
- Naguib, M., Kurtoglu, M., Presser, V., Lu, J., Niu, J., Heon, M., Hultman, L., Gogotsi, Y., Barsoum, M. W. (2011), "Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2", Adv. Mater., 23, 4248-4253. https://doi.org/10.1002/adma.201102306.
- Natu, V., Clites, M., Pomerantseva, E., Barsoum, M.W. (2018), "Mesoporous MXene powders synthesized by acid induced crumpling and their use as Na-Ion battery anodes", Mater. Res. Lett., 6, 230-235. https://doi.org/10.1080/21663831.2018.1434249.
- Nejadi, M.M., Mohammadimehr, M., Mehrabi, M. (2021), "Free vibration and buckling of functionally graded carbon nanotubes/graphene platelets Timoshenko sandwich beam resting on variable elastic foundation", Adv. Nano Res., 10(6), 539-548. http://doi.org/10.12989/anr.2021.10.6.539.
- Oh, J.M., Kwon, H., Kim, W., Lim, J.W. (2014), "Oxygen behavior during non-contact deoxidation of titanium powder using calcium vapor", Thin Solid Films, 551, 98-101. https://doi.org/10.1016/j.tsf.2013.11.076.
- Oh, J.M., Lee, B.K., Suh, C.Y., Cho, S.W., Lim, J.W. (2012), "Preparation method of Ti powder with oxygen concentration of <1000 Ppm using Ca", Powder Metall., 55, 402-404. https://doi.org/10.1179/1743290112Y.0000000013.
- Oh, J.M., Roh, K.M., Lee, B.K., Suh, C.Y., Kim, W., Kwon, H., Lim, J.W. (2014), "Preparation of low oxygen content alloy powder from Ti binary alloy scrap by hydrogenation-dehydrogenation and deoxidation process", J. Alloys Compd., 593, 61-66. https://doi.org/10.1016/j.jallcom.2014.01.033.
- Peng, C., Wei, P., Chen, X., Zhang, Y., Zhu, F., Cao, Y., Wang, H., Yu, H., Peng, F. (2018), "a hydrothermal etching route to synthesis of 2D MXene (Ti3C2, Nb2C): Enhanced exfoliation and improved adsorption performance", Ceram. Int., 44, 18886-18893. https://doi.org/10.1016/j.ceramint.2018.07.124.
- Rakhi, R.B., Ahmed, B., Hedhili, M.N., Anjum, D.H., Alshareef, H.N. (2015), "Effect of postetch annealing gas composition on the structural and electrochemical properties of Ti2CTx MXene electrodes for supercapacitor applications", Chem. Mater., 27, 5314-5323. https://doi.org/10.1021/acs.chemmater.5b01623.
- Ramirez-Gonzalez, D., Cruz-Rivera, J.J., Tiznado, H., Rodriguez, A.G., Guillen-Escamilla, I., Zamudio-Ojeda, A. (2020), "Caffeine as a source for nitrogen doped graphene, and its functionalization with silver nanowires in-situ", Adv. Nano Res., 9(1), 25-32. https://doi.org/10.12989/anr.2020.9.1.025.
- Sarycheva, A., Makaryan, T., Maleski, K., Satheeshkumar, E., Melikyan, A., Minassian, H., Yoshimura, M., Gogotsi, Y. (2017), "Two-Dimensional titanium carbide (MXene) as surface-enhanced raman scattering substrate", J. Phys. Chem. C, 121, 19983-19988. https://doi.org/10.1021/acs.jpcc.7b08180.
- Scheibe, B., Kupka, V., Peplinska, B., Jarek, M., Tadyszak, K. (2019), "The influence of oxygen concentration during MAX phases (Ti3AlC2) preparation on the ΑAl2O3 microparticles content and specific surface area of multilayered MXenes (Ti3C2Tx)", Materials, 12, 353. https://doi.org/10.3390/ma12030353.
- Schultz, T., Frey, N.C., Hantanasirisakul, K., Park, S., May, S.J., Shenoy, V.B., Gogotsi, Y., Koch, N. (2019), "Surface termination dependent work function and electronic properties of Ti3C2Tx MXene", Chem. Mater., 31, 6590-6597. https://doi.org/10.1021/acs.chemmater.9b00414.
- Shahzad, F., Alhabeb, M., Hatter, C.B., Anasori, B., Hong, S.M., Koo, C.M., Gogotsi, Y. (2016), "Electromagnetic interference shielding with 2D transition metal carbides (MXenes)", Science, 353, 1137-1140. https://doi.org/10.1126/science.aag2421.
- Shao, M., Yang, M., Shao, Y., Chai, J., Qu, Y., Yang, M., Wang, Z., Ip, W.F., Kwok, C.T., Shi, X., Lu, Z., Wang, S., Wang, X., Pan, H. (2017), "Synergistic Effect of 2D Ti2C and G-C3N4 for efficient photocatalytic hydrogen production", J. Mater. Chem. A, 5, 16748-16756. https://doi.org/10.1039/c7ta04122e.
- Shen, C., Wang, L., Zhou, A., Zhang, H., Chen, Z., Hu, Q., Qin, G. (2017), "MoS2-decorated Ti3C2 MXene nanosheet as anode material in lithium-ion batteries", J. Electrochem. Soc., 164, A2654-A2659. https://doi.org/10.1149/2.1421712jes.
- Son, Y., Park, M., Son, Y., Lee, J.S., Jang, J.H., Kim, Y., Cho, J. (2014), "Quantum confinement and its related effects on the critical size of GeO2 nanoparticles anodes for lithium batteries", Nano Lett., 14, 1005-1010. https://doi.org/10.1021/nl404466v.
- Wang, Y., Li, Y., Qiu, Z., Wu, X., Zhou, P., Zhou, T., Zhao, J., Miao, Z., Zhou, J., Zhuo, S. (2018), "Fe3O4@Ti3C2 MXene hybrids with ultrahigh volumetric capacity as an anode material for lithium-ion batteries", J. Mater. Chem. A, 6, 11189-11197. https://doi.org/10.1039/c8ta00122g.
- Wen, Y., Rufford, T. E., Chen, X., Li, N., Lyu, M., Dai, L., Wang, L. (2017), "Nitrogen-doped Ti3C2Tx MXene electrodes for high-performance supercapacitors", Nano Energy, 38, 368-376. https://doi.org/10.1016/j.nanoen.2017.06.009.
- Xiang, Q., Ma, X., Zhang, D., Zhou, H., Liao, Y., Zhang, H., Xu, S., Levchenko, I., Bazaka, K. (2019), "Interfacial modification of titanium dioxide to enhance photocatalytic efficiency towards H2 production", J. Colloid Interface Sci., 556, 376-385. https://doi.org/10.1016/j.jcis.2019.08.033.
- Yan, H., Fan, X., Cai, M., Song, S., Zhu, M. (2021), "Amino-functionalized Ti3C2Tx loading ZIF-8 nanocontainer@benzotriazole as multifunctional composite filler towards self-healing epoxy coating", J. Colloid Interface Sci., 602, 131-145. https://doi.org/10.1016/j.jcis.2021.06.004.
- Yan, H., Zhang, L., Li, H., Fan, X., Zhu, M. (2020), "Towards high-performance additive of Ti3C2/graphene hybrid with a novel wrapping structure in epoxy coating", Carbon, 157, 217-233. https://doi.org/10.1016/j.carbon.2019.10.034.
- Yun, T., Kim, H., Iqbal, A., Cho, Y.S., Lee, G.S., Kim, M.K., Kim, S.J., Kim, D., Gogotsi, Y., Kim, S.O., Koo, C.M. (2020), "Electromagnetic shielding of monolayer MXene assemblies", Adv. Mater., 32, 1906769. https://doi.org/10.1002/adma.201906769.
- Zhang, C.J., Anasori, B., Seral-Ascaso, A., Park, S.H., McEvoy, N., Shmeliov, A., Duesberg, G.S., Coleman, J.N., Gogotsi, Y., Nicolosi, V. (2017), "Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance", Adv. Mater., 29, 1702678. https://doi.org/10.1002/adma.201702678.
- Zhang, C.J., Nicolosi, V. (2019), "Graphene and MXene-Based transparent conductive electrodes and supercapacitors", Energy Storage Mater., 16, 102-125. https://doi.org/10.1016/j.ensm.2018.05.003.
- Zhu, M., Huang, Y., Deng, Q., Zhou, J., Pei, Z., Xue, Q., Huang, Y., Wang, Z., Li, H., Huang, Q., Zhi, C. (2016), "Highly flexible, freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with MXene", Adv. Energy Mater., 6, 1600969. https://doi.org/10.1002/aenm.201600969.