Acknowledgement
The research described in this paper was financially supported by the Projects of Open Fund of National Key Laboratory of High-Speed Railway Track Technology of China (2021YJ048) and Central Guidance for Local Science and Technology Development of China (226Z0801G).
References
- Biscontin, G., Morassi, A. and Wendel, P. (2000), "Vibrations of steel-concrete composite beams", J. Vib. Control, 6(5), 691-714. https://doi.org/10.1177/107754630000600503.
- Dezi, L., Gara, F., Leoni, G. and Tarantino, A.M. (2001), "Time dependent analysis of shear-lag effect in composite beams", ASCE-J. Eng. Mech., 127(1), 71-79. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:1(71).
- Dezi, L., Gara, F. and Leoni, G. (2003), "Shear-lag effect in twin-girder composite decks", Steel Compos. Struct., 3(2), 111-122. https://doi.org/10.12989/scs.2003.3.2.111.
- Dezi, L. and Leoni, G. (2006), "Effective slab width in prestressed twin-girder composite decks", ASCE-J. Struct. Eng., 132(9), 1358-1370. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:9(1358).
- Gara, F., Leoni, G. and Dezi, L. (2009), "A beam finite element including shear lag effect for the time-dependent analysis of steel-concrete composite decks", Eng. Struct., 31(8), 1888-1902. https://doi.org/10.1016/j.engstruct.2009.03.017.
- Gara, F., Ranzi, G. and Leoni, G. (2010). "Short- and long-term analytical solutions for composite beams with partial interaction and shear-lag effects", Int. J. Steel Struct., 10(4), 359-372. https://doi.org/10.1007/BF03215844.
- Girhammar, U.A. and Pan, D.H. (1993), "Dynamic analysis of composite members with interlayer slip", Int. J. Solids Struct., 30(6), 797-823. https://doi.org/10.1016/0020-7683(93)90041-5.
- Girhammar, U.A., Pan, D.H. and Anders, G. (2009), "Exact dynamic analysis of composite beams with partial interaction", Int. J. Mech. Sci., 51(8), 565-582. https://doi.org/10.1016/j.ijmecsci.2009.06.004.
- Guo, J.Q., Fang, Z.Z. and Zheng, Z. (2008), Design Theory of Box Girder, China Communication Press. (in Chinese).
- Henriques, D., Goncalves, R. and Camotim, D. (2015), "A physically non-linear GBT-based finite element for steel and steel-concrete beams including shear lag effects", Thin-Wall. Struct., 90, 202-215. https://doi.org/10.1016/j.tws.2015.01.010.
- Hou, Z., Xia, H., Wang, Y., Zhang, Y. and Zhang, T. (2015), "Dynamic analysis and model test on steel-concrete composite beams under moving loads", Steel Compos. Struct., 18(3), 565-582. https://doi.org/10.12989/scs.2015.18.3.565.
- Karoumi, R. and Ulker-Kaustell, M. (2011), "Application of the continuous wavelet transform on the free vibrations of a steel-concrete composite railway bridge", Eng. Struct., 33(3), 911-919. https://doi.org/10.1016/j.engstruct.2010.12.012.
- Liu, K., Reynders, E., Roeck, G.D. and Lombaert, G. (2009), "Experimental and numerical analysis of a composite bridge for high-speed trains", J. Sound Vib., 320, 201-220. https://doi.org/10.1016/j.jsv.2008.07.010.
- Nakai, H. and Yoo, C.H. (1988), Analysis and Design of Curved Steel Bridges, New York, McGraw-Hill Co.
- Novozhilov, V.V. and Radok, J.M.R. (2014), Thin Shell Theory, London: Springer.
- Shen, X., Chen, W., Wu, Y. and Xu, R. (2011), "Dynamic analysis of partial-interaction composite beams", Compos. Sci. Technol., 71(10), 1286-1294. https://doi.org/10.1016/j.compscitech.2011.04.013.
- Sun, F.F. and Bursi, O. (2005), "Displacement-based and two-field mixed variational formulation for composite beams with shear lag", ASCE-J. Eng. Mech., 131(2), 199-210. https://doi.org/10.1061/(ASCE)0733-9399(2005)131:2(199).
- Wang, G.M., Zhu, L., Ji, X.L. and Ji, W.Y. (2020), "Finite beam element for curved steel-concrete composite box beams considering time-dependent effect", Materials, 13(15), 3253. https://doi.org/10.3390/ma13153253.
- Wang, H.L. and Zhu, E.Y. (2018), "Dynamic response analysis of monorail steel-concrete composite beam-train interaction system considering slip effect", Eng. Struct., 160, 257-269. https://doi.org/10.1016/j.engstruct.2018.01.037.
- Wang, J., Ren, J. and Zhang, Y. (2019), "Vibration analysis of carbon fiber-reinforced steel-concrete composite beams considering shear-slip effects", Int. J. Struct. Stab. Dyn., 19(7), 1950077. https://doi.org/10.1142/S0219455419500779.
- Vlasov, V.Z. (1961), Thin-Walled Elastic Beams, Jerusalem: Israel Program for Scientific Translation.
- Xia, H., Roeck, G.D. and Goicolea, J.M. (2012), Bridge Vibration and Controls: New Research, New York: Nova Science Publishers Inc.
- Zhou, W., Jiang, L. and Yu, Z. (2013), "Analysis of free vibration characteristic of steel-concrete composite box-girder considering shear lag and slip", J. Central South Univ., 20(9), 2570-2577. https://doi.org/10.1007/s11771-013-1770-x.
- Zhu, L., Nie, J.G. and Ji, W.Y. (2017), "Positive and negative shear lag behaviors of composite twin-girder decks with varying cross-section", Sci. China Technol. Sci., 60(1), 1-17. https://doi.org/10.1007/s11431-016-0314-x.
- Zhu, L. and Su, R.K.L. (2017), "Analytical solutions for composite beams with slip, shear-lag and time-dependent effects", Eng. Struct., 152, 559-578. https://doi.org/10.1016/j.engstruct.2017.08.071.
- Zhu, L., Wang, H.L., Han, B., Zhao, G.Y., Huo, X.J. and Ren, X. Z. (2020), "Dynamic analysis of a coupled steel-concrete composite box girder bridge-train system considering slip and shear-lag", Thin-Wall. Struct., 157, 107060. https://doi.org/10.1016/j.tws.2020.107060.
- Zhu, L., Wang, J.J., Li, M.J., Chen, C. and Wang, G.M. (2020), "Finite beam element with 22 DOF for curved composite box girders considering torsion, distortion, and biaxial slip", Archiv. Civil Mech. Eng., 20, 101. https://doi.org/10.1007/s43452-020-00098-y.
- Zhu, L., Ma, Q., Yan, W. T. and Han, B. (2021), "Effective flange width of steel-concrete composite beams under negative moments in the normal service stage", Steel Compos. Struct., 38(4), 415-430. https://doi.org/10.12989/scs.2021.38.4.415.
- Zhu, L., Wang, J. J., Li, M. J., Han, B., Tang, L. and Chen, C. (2021), "Finite beam element with 26 DOFs for curved composite box girders considering constrained torsion, distortion, shear lag and biaxial slip", Eng. Struct., 232, 111797. https://doi.org/10.1016/j.engstruct.2020.111797.