DOI QR코드

DOI QR Code

Effects of micromechanical models on the dynamics of functionally graded nanoplate

  • Tao Hai (School of Computer and Information, Qiannan Normal University for Nationalities) ;
  • A. Yvaz (World-class research center "Advanced Digital Technologies", State Marine Technical University) ;
  • Mujahid Ali (Department of Transport System, Traffic Engineering, and Logistics, Faculty of Transport and Aviation Engineering, Silesian University of Technology) ;
  • Stanislav Strashnov (General Education Courses Department, Peoples' Friendship University of Russia (RUDN University)) ;
  • Mohamed Hechmi El Ouni (Department of Civil Engineering, College of Engineering, King Khalid University) ;
  • Mohammad Alkhedher (Mechanical Engineering Department, Abu Dhabi University) ;
  • Arameh Eyvazian (Mechanical and Industrial Engineering Department, College of Engineering, Qatar University)
  • Received : 2020.03.19
  • Accepted : 2023.01.02
  • Published : 2023.07.25

Abstract

The present research investigates how micromechanical models affect the behavior of Functionally Graded (FG) plates under different boundary conditions. The study employs diverse micromechanical models to assess the effective material properties of a two-phase particle composite featuring a volume fraction of particles that continuously varies throughout the thickness of the plate. Specifically, the research examines the vibrational response of the plate on a Winkler-Pasternak elastic foundation, considering different boundary conditions. To achieve this, the governing differential equations and boundary conditions are derived using Hamilton's principle, which is based on a four-variable shear deformation refined plate theory. Additionally, the Galerkin method is utilized to compute the plate's natural frequencies. The study explores how the plate's natural frequencies are influenced by various micromechanical models, such as Voigt, Reuss, Hashin-Shtrikman bounds, and Tamura, as well as factors such as boundary conditions, elastic foundation parameters, length-to-thickness ratio, and aspect ratio. The research results can provide valuable insights for future analyses of FG plates with different boundaries, utilizing different micromechanical models.

Keywords

Acknowledgement

This work was supported by Foundation of State Key Laboratory of Public Big Data (No.2023004), UTM Research Fellow (No.00P27), the National Natural Science Foundation of China (No.61862051), the Science and Technology Foundation of Guizhou Province (No.[2019]1299, No.ZK [2022]449), the Top-notch Talent Program of Guizhou province (No.KY[2018]080), the Natural Science Foundation of Education of Guizhou province(No.[2019]203) and the Funds of Qiannan Normal University for Nationalities (No. qnsy2019rc09). The Educational Department of Guizhou under Grant No. KY [2019]067. Key Laboratory of Advanced Manufacturing Technology of the Ministry of Education of Guizhou University (GZUAMT2022KF [07]) The research is partially funded by the Ministry of Science and Higher Education of the Russian Federation as part of World-class Research Center program: Advanced Digital Technologies (contract No. 075-15-2022-312 dated 20.04.2022) This research is supported by Abu Dhabi's Advanced Technology Research Council via the ASPIRE Award for Research Excellence program through Project Number AARE20-250. This paper has been supported by the RUDN University Strategic Academic Leadership Program. The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through large group Research Project under grant number RGP2/6/44 This research is supported by ASPIRE, the technology program management pillar of Abu Dhabi's Advanced Technology Research Council (ATRC), via the ASPIRE Award for Research Excellence initiative.

References

  1. Abualnour, M., Chikh, A., Hebali, H., Kaci, A., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019), "Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput. Concrete. 24(6), 489-498. https://doi.org/10.12989/cac.2019.24.6.489.
  2. Addou, F.Y., Meradjah, M., Bousahla, A.A., Benachour, A., Bourada, F., Tounsi, A. and Mahmoud, S. (2019), "Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT", Comput. Concrete. 24(4), 347-367. https://doi.org/10.12989/cac.2019.24.4.347.
  3. Akbarzadeh, A., Abedini, A. and Chen, Z. (2015), "Effect of micromechanical models on structural responses of functionally graded plates", Compos. Struct., 119, 598-609. https://doi.org/10.1016/j.compstruct.2014.09.031.
  4. Akbarzadeh, A., Babaei, M. and Chen, Z. (2011), "Coupled thermopiezoelectric behaviour of a one-dimensional functionally graded piezoelectric medium based on C-T theory", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 225(11), 2537-2551. https://doi.org/10.1177/0954406211406954.
  5. Akbarzadeh, A., Fu, J., Chen, Z. and Qian, L. (2014), "Dynamic eigenstrain behavior of magnetoelastic functionally graded cellular cylinders", Compos. Struct., 116, 404-413. https://doi.org/10.1016/j.compstruct.2014.05.036.
  6. Akbarzadeh, A. and Pasini, D. (2014), "Phase-lag heat conduction in multilayered cellular media with imperfect bonds", Int. J. Heat Mass Transf., 75, 656-667. https://doi.org/10.1016/j.ijheatmasstransfer.2014.03.090.
  7. Attia, A., Tounsi, A., Bedia, E.A. and Mahmoud, S. (2015), "Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories", Steel Compos. Struct., 18(1), 187-212. https://doi.org/10.12989/scs.2015.18.1.187.
  8. Baferani, A.H., Saidi, A. and Ehteshami, H. (2011), "Accurate solution for free vibration analysis of functionally graded thick rectangular plates resting on elastic foundation", Compos. Struct., 93(7), 1842-1853. https://doi.org/10.1016/j.compstruct.2011.01.020.
  9. Barati, M.R. (2018), "A general nonlocal stress-strain gradient theory for forced vibration analysis of heterogeneous porous nanoplates", Europ. J. Mech.-A/Solids. 67, 215-230. https://doi.org/10.1016/j.euromechsol.2017.09.001.
  10. Barati, M.R. and Shahverdi, H. (2017), "Hygro-thermal vibration analysis of graded double-refined-nanoplate systems using hybrid nonlocal stress-strain gradient theory", Compos. Struct., https://doi.org/10.1016/j.compstruct.2017.06.004.
  11. Batou, B., Nebab, M., Bennai, R., Atmane, H.A., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699. https://doi.org/10.12989/scs.2019.33.5.699.
  12. Belbachir, N., Draich, K., Bousahla, A.A., Bourada, M., Tounsi, A. and Mohammadimehr, M. (2019), "Bending analysis of antisymmetric cross-ply laminated plates under nonlinear thermal and mechanical loadings", Steel Compos. Struct., 33(1), 81-92. https://doi.org/10.12989/scs.2019.33.1.081.
  13. Beldjelili, Y., Tounsi, A. and Mahmoud, S. (2016), "Hygrothermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., 18(4), 755-786. https://doi.org/10.12989/sss.2016.18.4.755.
  14. Bellal, M., Hebali, H., Heireche, H., Bousahla, A.A., Tounsi, A., Bourada, F., Mahmoud, S., Bedia, E. and Tounsi, A. (2020), "Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model", Steel Compos. Struct., 34(5), 643-655. https://doi.org/10.12989/scs.2020.34.5.643.
  15. Bellifa, H., Benrahou, K.H., Bousahla, A.A., Tounsi, A. and Mahmoud, S. (2017), "A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams", Struct. Eng. Mech., 62(6), 695-702. https://doi.org/10.12989/sem.2017.62.6.695.
  16. Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J. Brazil. Soc. Mech. Sci. Eng., 38(1), 265-275. https://doi.org/10.1007/s40430-015-0354-0.
  17. Bouderba, B., Houari, M.S.A., Tounsi, A. and Mahmoud, S. (2016), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", Struct. Eng. Mech., 58(3), 397-422. https://doi.org/10.12989/sem.2016.58.3.397.
  18. Boukhari, A., Atmane, H.A., Tounsi, A., Adda, B. and Mahmoud, S. (2016), "An efficient shear deformation theory for wave propagation of functionally graded material plates", Struct. Eng. Mech., 57(5), 837-859. https://doi.org/10.12989/sem.2016.57.5.837.
  19. Boukhlif, Z., Bouremana, M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A. and Al-Osta, M.A. (2019), "A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation", Steel Compos. Struct., 31(5), 503-516. https://doi.org/10.12989/scs.2019.31.5.503.
  20. Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S. (2019), "The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., 18(2), 161-178. https://doi.org/10.12989/gae.2019.18.2.161.
  21. Bousahla, A.A., Benyoucef, S., Tounsi, A. and Mahmoud, S. (2016), "On thermal stability of plates with functionally graded coefficient of thermal expansion", Struct. Eng. Mech., 60(2), 313-335. https://doi.org/10.12989/sem.2016.60.2.313.
  22. Bousahla, A.A., Bourada, F., Mahmoud, S., Tounsi, A., Algarni, A., Bedia, E. and Tounsi, A. (2020), "Buckling and dynamic behavior of the simply supported CNT-RC beams using an integral-first shear deformation theory", Comput. Concrete. 25(2), 155-166. https://doi.org/10.12989/cac.2020.25.2.155.
  23. Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Tounsi, A. and Mahmoud, S. (2019), "Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., 7(3), 191. https://doi.org/10.12989/anr.2019.7.3.191.
  24. Chaabane, L.A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F.Z., Tounsi, A., Derras, A., Bousahla, A.A. and Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., 71(2), 185-196. https://doi.org/10.12989/sem.2019.71.2.185.
  25. Chi, S.-H. and Chung, Y.-L. (2006), "Mechanical behavior of functionally graded material plates under transverse load-Part I: Analysis", Int. J. Solids Struct., 43(13), 3657-3674. https://doi.org/10.1016/j.ijsolstr.2005.04.011.
  26. Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart Struct. Syst., 19(3), 289-297. https://doi.org/10.12989/sss.2017.19.3.289.
  27. Ebrahimi, F., Jafari, A. and Barati, M.R. (2017), "Vibration analysis of magneto-electro-elastic heterogeneous porous material plates resting on elastic foundations", Thin-Wall. Struct.,. 119, 33-46. https://doi.org/10.1016/j.tws.2017.04.002.
  28. Eyvazian, A., Hamouda, A.M., Tarlochan, F., Mohsenizadeh, S. and Dastjerdi, A.A. (2019), "Damping and vibration response of viscoelastic smart sandwich plate reinforced with non-uniform graphene platelet with magnetorheological fluid core", Steel Compos. Struct., 33(6), 891-906. https://doi.org/10.12989/scs.2019.33.6.891.
  29. Eyvazian, A., Shahsavari, D. and Karami, B. (2020), "On the dynamic of graphene reinforced nanocomposite cylindrical shells subjected to a moving harmonic load", Int. J. Eng. Sci., 154, 103339. https://doi.org/10.1016/j.ijengsci.2020.103339.
  30. Ferreira, A., Batra, R., Roque, C., Qian, L. and Jorge, R. (2006), "Natural frequencies of functionally graded plates by a meshless method", Compos. Struct., 75(1-4), 593-600. https://doi.org/10.1016/j.compstruct.2006.04.018.
  31. Fourn, H., Atmane, H.A., Bourada, M., Bousahla, A.A., Tounsi, A. and Mahmoud, S. (2018), "A novel four variable refined plate theory for wave propagation in functionally graded material plates", Steel Compos. Struct., 27(1), 109-122. https://doi.org/10.12989/scs.2018.27.1.109.
  32. Gasik, M.M. and Lilius, R.R. (1994), "Evaluation of properties of W Cu functional gradient materials by micromechanical model", Comput. Mater. Sci., 3(1), 41-49. https://doi.org/10.1016/0927-0256(94)90151-1.
  33. Ghayesh, M.H. (2018), "Dynamics of functionally graded viscoelastic microbeams", Int. J. Eng. Sci., 124, 115-131. https://doi.org/10.1016/j.ijengsci.2017.11.004.
  34. Ghayesh, M.H. (2018), "Nonlinear vibration analysis of axially functionally graded shear-deformable tapered beams", Appl. Mathem. Modell., 59, 583-596. https://doi.org/10.1016/j.apm.2018.02.017.
  35. Ghayesh, M.H. (2019), "Viscoelastic mechanics of Timoshenko functionally graded imperfect microbeams", Compos. Struct., 225, 110974. https://doi.org/10.1016/j.compstruct.2019.110974.
  36. Ghayesh, M.H. (2019), "Viscoelastic nonlinear dynamic behaviour of Timoshenko FG beams", Europ. Phys. J. Plus. 134(8), 401. https://doi.org/10.1140/epjp/i2019-12472-x.
  37. Gross, D. and Seelig, T. (2017), Fracture Mechanics: With an Introduction to Micromechanics, Springer, https://doi.org/10.1007/978-3-642-19240-1.
  38. Hill, R. (1964), "Theory of mechanical properties of fibre-strengthened materials: I. Elastic behaviour", J. Mech. Phys. Solids. 12(4), 199-212. https://doi.org/10.1016/0022-5096(64)90019-5.
  39. Hirwani, C., Panda, S., Mahapatra, T. and Mahapatra, S. (2017), "Numerical study and experimental validation of dynamic characteristics of delaminated composite flat and curved shallow shell structure", J. Aeros. Eng., 30(5), 04017045. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000756.
  40. Hirwani, C.K., Panda, S.K., Mahapatra, S.S., Mandal, S.K. and De, A.K. (2017). "Dynamic behaviour of delaminated composite plate under blast loading", Gas Turbine India Conference. https://doi.org/10.1115/GTINDIA2017-4847.
  41. Hirwani, C.K., Panda, S.K. and Mahapatra, T.R. (2018), "Nonlinear finite element analysis of transient behavior of delaminated composite plate", J. Vib. Acoust., 140(2). https://doi.org/10.1115/1.4037848.
  42. Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S. (2016), "A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates", Steel Compos. Struct., 22(2), 257-276. https://doi.org/10.12989/scs.2016.22.2.257.
  43. Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Bedia, E. and Al-Osta, M.A. (2020), "A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis", Comput. Concrete. 25(1), 37-57. https://doi.org/10.12989/cac.2020.25.1.037.
  44. Kar, V.R. and Panda, S.K. (2015), "Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel", Steel Compos. Struct., 18(3), 693-709. https://doi.org/10.12989/scs.2015.18.3.693.
  45. Karama, M., Harb, B.A., Mistou, S. and Caperaa, S. (1998), "Bending, buckling and free vibration of laminated composite with a transverse shear stress continuity model", Compos. Part B: Eng., 29(3), 223-234. https://doi.org/10.1016/S1359-8368(97)00024-3.
  46. Karami, B. and Janghorban, M. (2016), "Effect of magnetic field on the wave propagation in nanoplates based on strain gradient theory with one parameter and two-variable refined plate theory", Modern Phys. Lett. B. 30(36), 1650421. https://doi.org/10.1142/S0217984916504212.
  47. Karami, B. and Janghorban, M. (2019), "A new size-dependent shear deformation theory for wave propagation analysis of triclinic nanobeams", Steel Compos. Struct., 32(2), 213-223. https://doi.org/10.12989/scs.2019.32.2.213.
  48. Karami, B. and Janghorban, M. (2020), "On the mechanics of functionally graded nanoshells", Int. J. Eng. Sci., 153, 103309. https://doi.org/10.1016/j.ijengsci.2020.103309.
  49. Karami, B., Janghorban, M. and Rabczuk, T. (2020), "Forced vibration analysis of functionally graded anisotropic nanoplates resting on winkler/pasternak-foundation", CMC-Comput. Mater. Continua, 62(2), 607-629. https://doi.org/10.32604/cmc.2020.08032.
  50. Karami, B., Janghorban, M., Shahsavari, D. and Tounsi, A. (2018), "A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates", Steel Compos. Struct., 28(1), 99-110. https://doi.org/10.12989/scs.2018.28.1.099.
  51. Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2020), "Free vibration analysis of FG nanoplate with poriferous imperfection in hygrothermal environment", Struct. Eng. Mech., 73(2), 191. https://doi.org/10.12989/sem.2020.73.2.191.
  52. Karami, B., Shahsavari, D., Janghorban, M. and Tounsi, A. (2019), "Resonance behavior of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets", Int. J. Mech. Sci., 156, 94-105. https://doi.org/10.1016/j.ijmecsci.2019.03.036.
  53. Katariya, P.V. and Panda, S.K. (2019), "Frequency and deflection responses of shear deformable skew sandwich curved shell panel: A finite element approach", Arab. J. Sci. Eng., 44(2), 1631-1648. https://doi.org/10.1007/s13369-018-3633-0.
  54. Katariya, P.V. and Panda, S.K. (2019), "Numerical frequency analysis of skew sandwich layered composite shell structures under thermal environment including shear deformation effects", Struct. Eng. Mech., 71(6), 657-668. https://doi.org/10.12989/scs.2020.34.2.279.
  55. Katariya, P.V. and Panda, S.K. (2020), "Numerical analysis of thermal post-buckling strength of laminated skew sandwich composite shell panel structure including stretching effect", Steel Compos. Struct., 34(2), 279. https://doi.org/10.12989/scs.2020.34.2.279.
  56. Khiloun, M., Bousahla, A.A., Kaci, A., Bessaim, A., Tounsi, A. and Mahmoud, S. (2019), "Analytical modeling of bending and vibration of thick advanced composite plates using a four-variable quasi 3D HSDT", Eng. Comput., 36(3), 807-821. https://doi.org/10.1007/s00366-019-00732-1.
  57. Kim, J.H. and Paulino, G.H. (2003), "An accurate scheme for mixed-mode fracture analysis of functionally graded materials using the interaction integral and micromechanics models", Int. J. Numer. Meth. Eng., 58(10), 1457-1497. https://doi.org/10.1002/nme.819.
  58. Lu, C.-F. and Chen, W. (2005), "Free vibration of orthotropic functionally graded beams with various end conditions", Struct. Eng. Mech., 20(4), 465-476. https://doi.org/10.12989/sem.2005.20.4.465.
  59. Lubej, S. and Radosavljevic, M. (2013). "Potential reduction of concrete deterioration through controlled DEF in hydrated concrete", Int. J. Phys. Sci., 8(24), 1307-1318, https://doi.org/10.5897/IJPS2013.3923.
  60. Mahmoudi, A., Benyoucef, S., Tounsi, A., Benachour, A., Adda Bedia, E.A. and Mahmoud, S. (2019), "A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations", J. Sandw. Struct. Mater., 21(6), 1906-1929. https://doi.org/10.1177/1099636217727577.
  61. Mechab, I., Atmane, H.A., Tounsi, A. and Belhadj, H.A. (2010), "A two variable refined plate theory for the bending analysis of functionally graded plates", Acta Mech. Sinica. 26(6), 941-949. https://doi.org/10.1007/s10409-010-0372-1.
  62. Mehar, K. and Panda, S.K. (2019), "Theoretical deflection analysis of multi-walled carbon nanotube reinforced sandwich panel and experimental verification", Compos. Part B: Eng., 167 317-328. https://doi.org/10.1016/j.compositesb.2018.12.058.
  63. Mehar, K., Panda, S.K. and Mahapatra, T.R. (2019), "Large deformation bending responses of nanotube-reinforced polymer composite panel structure: Numerical and experimental analyses", Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. 233(5), 1695-1704. https://doi.org/10.1177/0954410018761192.
  64. Motezaker, M. and Eyvazian, A. (2020), "Post-buckling analysis of Mindlin Cut out-plate reinforced by FG-CNTs", Steel Compos. Struct., 34(2), 289-297. https://doi.org/10.12989/scs.2020.34.2.289.
  65. Natarajan, S., Chakraborty, S., Thangavel, M., Bordas, S. and Rabczuk, T. (2012), "Size-dependent free flexural vibration behavior of functionally graded nanoplates", Comput. Mater. Sci., 65, 74-80. https://doi.org/10.1016/j.commatsci.2012.06.031.
  66. Pandey, H.K., Hirwani, C.K., Sharma, N., Katariya, P.V., Dewangan, H.C. and Panda, S.K. (2019), "Effect of nano glass cenosphere filler on hybrid composite eigenfrequency responses-An FEM approach and experimental verification", Adv. Nano Res., 7(6), 419-429. https://doi.org/10.12989/anr.2019.7.6.419.
  67. Rahmani, M.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Bedia, E., Mahmoud, S., Benrahou, K.H. and Tounsi, A. (2020), "Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a four-unknown refined integral plate theory", Comput. Concrete. 25(3), 225-244. https://doi.org/10.12989/cac.2020.25.3.225.
  68. Sahla, M., Saidi, H., Draiche, K., Bousahla, A.A., Bourada, F. and Tounsi, A. (2019), "Free vibration analysis of angle-ply laminated composite and soft core sandwich plates", Steel Compos. Struct., 33(5), 663-679. https://doi.org/10.12989/scs.2019.33.5.663.
  69. Sahoo, S.S., Panda, S.K. and Sen, D. (2016), "Effect of delamination on static and dynamic behavior of laminated composite plate", AIAA J., 54(8), 2530-2544. https://doi.org/10.2514/1.J054908.
  70. Shahsavari, D. and Janghorban, M. (2017), "Bending and shearing responses for dynamic analysis of single-layer graphene sheets under moving load", J. Brazil. Soc. Mech. Sci. Eng., 1-13. https://doi.org/10.1007/s40430-017-0863-0.
  71. Shahsavari, D., Karami, B. and janghorban, M. (2019), "On buckling analysis of laminated composite plates using a nonlocal refined four-variable model", Steel Compos. Struct., 32(2), 173-187. https://doi.org/10.12989/scs.2019.32.2.173.
  72. Shahsavari, D., Karami, B. and Janghorban, M. (2019), "Size-dependent vibration analysis of laminated composite plates", Adv. Nano Res., 7(5), 337-349. https://doi.org/10.12989/anr.2019.7.5.337.
  73. Shahsavari, D., Karami, B. and Li, L. (2018), "A high-order gradient model for wave propagation analysis of porous FG nanoplates", Steel Compos. Strcut., 29(1), 53-66. https://doi.org/10.12989/scs.2018.29.1.053.
  74. Sharma, N., Mahapatra, T.R., Panda, S.K. and Mehar, K. (2018), "Evaluation of vibroacoustic responses of laminated composite sandwich structure using higher-order finite-boundary element model", Steel Compos. Struct., 28(5), 629-639. https://doi.org/10.12989/scs.2018.28.5.629.
  75. Shimpi, R. and Patel, H. (2006), "Free vibrations of plate using two variable refined plate theory", J. Sound Vib., 296(4), 979-999. https://doi.org/10.1016/j.ijsolstr.2006.02.007.
  76. Shimpi, R. and Patel, H. (2006), "A two variable refined plate theory for orthotropic plate analysis", Int. J. Solids Struct., 43(22), 6783-6799. https://doi.org/10.1016/j.ijsolstr.2006.02.007.
  77. Singh, V.K., Mahapatra, T.R. and Panda, S.K. (2016), "Nonlinear transient analysis of smart laminated composite plate integrated with PVDF sensor and AFC actuator", Compos. Struct., 157, 121-130. https://doi.org/10.1016/j.compstruct.2016.08.020.
  78. Sobhy, M. (2013), "Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Compos. Struct., 99, 76-87. https://doi.org/10.1016/j.compstruct.2012.11.018.
  79. Thai, H.-T. and Kim, S.-E. (2012), "Analytical solution of a two variable refined plate theory for bending analysis of orthotropic Levy-type plates", Int. J. Mech. Sci., 54(1), 269-276. https://doi.org/10.1016/j.ijmecsci.2011.11.007.
  80. Tlidji, Y., Zidour, M., Draiche, K., Safa, A., Bourada, M., Tounsi, A., Bousahla, A.A. and Mahmoud, S. (2019), "Vibration analysis of different material distributions of functionally graded microbeam", Struct. Eng. Mech., 69(6), 637-649. https://doi.org/10.12989/sem.2019.69.6.637.
  81. Uymaz, B. and Aydogdu, M. (2013), "Three dimensional shear buckling of FG plates with various boundary conditions", Compos. Struct., 96, 670-682. https://doi.org/10.1016/j.compstruct.2012.08.031.
  82. Voigt, W. (1889), "Ueber die Beziehung zwischen den beiden Elasticitatsconstanten isotroper Korper", Annalen der physik. 274(12), 573-587. https://doi.org/10.1002/andp.18892741206.
  83. Yahia, S.A., Atmane, H.A., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143.
  84. Zaoui, F.Z., Ouinas, D. and Tounsi, A. (2019), "New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations", Compos. Part B: Eng., 159, 231-247. https://doi.org/10.1016/j.compositesb.2018.09.051.
  85. Zarga, D., Tounsi, A., Bousahla, A.A., Bourada, F. and Mahmoud, S. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Steel Compos. Struct., 32(3), 389-410. https://doi.org/10.12989/scs.2019.32.3.389.
  86. Zhi-Yuan, C. and Hua-Ning, W. (2007), "Free vibration of FGM cylindrical shells with holes under various boundary conditions", J. Sound Vib., 306(1-2), 227-237. https://doi.org/10.1016/j.jsv.2007.05.019.
  87. Zidi, M., Tounsi, A., Houari, M.S.A. and Beg, O.A. (2014), "Bending analysis of FGM plates under hygro-thermomechanical loading using a four variable refined plate theory", Aeros. Sci. Technol., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001.
  88. Zimmerman, R.W. (1994), "Behavior of the Poisson ratio of a two-phase composite material in the high-concentration limit", Appl. Mech. Rev., 47(1S), S38-S44. https://doi.org/10.1115/1.3122819.
  89. Zuiker, J.R. (1995), "Functionally graded materials: choice of micromechanics model and limitations in property variation", Compos. Eng., 5(7), 807-819. https://doi.org/10.1016/0961-9526(95)00031-H.