DOI QR코드

DOI QR Code

Mathematical formulations for static behavior of bi-directional FG porous plates rested on elastic foundation including middle/neutral-surfaces

  • Amr E. Assie (Mechanical Engineering Department, Faculty of Engineering, Jazan University) ;
  • Salwa A. Mohamed (Department of Engineering Mathematics, Faculty of Engineering, Zagazig University) ;
  • Alaa A. Abdelrahman (Department of Mechanical Design and Production, Faculty of Engineering, Zagazig University) ;
  • Mohamed A. Eltaher (Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University)
  • Received : 2022.11.02
  • Accepted : 2023.06.01
  • Published : 2023.07.25

Abstract

The present manuscript aims to investigate the deviation between the middle surface (MS) and neutral surface (NS) formulations on the static response of bi-directionally functionally graded (BDFG) porous plate. The higher order shear deformation plate theory with a four variable is exploited to define the displacement field of BDFG plate. The displacement field variables based on both NS and on MS are presented in detail. These relations tend to get and derive a new set of boundary conditions (BCs). The porosity distribution is portrayed by cosine function including three different configurations, center, bottom, and top distributions. The elastic foundation including shear and normal stiffnesses by Winkler-Pasternak model is included. The equilibrium equations based on MS and NS are derived by using Hamilton's principles and expressed by variable coefficient partial differential equations. The numerical differential quadrature method (DQM) is adopted to solve the derived partial differential equations with variable coefficient. Rigidities coefficients and stress resultants for both MS and NS formulations are derived. The mathematical formulation is proved with previous published work. Additional numerical and parametric results are developed to present the influences of modified boundary conditions, NS and MS formulations, gradation parameters, elastic foundations coefficients, porosity type and porosity coefficient on the static response of BDFG porous plate. The following model can be used in design and analysis of BDFG structure used in aerospace, vehicle, dental, bio-structure, civil and nuclear structures.

Keywords

References

  1. Abo-Bakr, H.M., Abo-Bakr, R.M., Mohamed, S.A. and Eltaher, M.A. (2021), "Multi-objective shape optimization for axially functionally graded microbeams", Compos. Struct., 258, 113370. https://doi.org/10.1016/j.compstruct.2020.113370.
  2. Akbari, P. and Asanjarani, A. (2019), "Semi-analytical mechanical and thermal buckling analyses of 2D-FGM circular plates based on the FSDT", Mech. Adv. Mater. Struct., 26(9), 753-764. https://doi.org/10.1080/15376494.2017.1410913.
  3. Al-Furjan, M.S.H., Xu, M.X., Farrokhian, A., Jafari, G.S., Shen, X. and Kolahchi, R. (2022), "On wave propagation in piezoelectric-auxetic honeycomb-2D-FGM micro-sandwich beams based on modified couple stress and refined zigzag theories", Waves Random Complex Media, 1-25. https://doi.org/10.1080/17455030.2022.2030499.
  4. Ali, M.I. and Azam, M.S. (2021), "Exact solution by dynamic stiffness method for the natural vibration of porous functionally graded plate considering neutral surface", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 235(7), 1585-1603. https://doi.org/10.1177/14644207209881
  5. Alipour, M.M. and Shariyat, M. (2019), "Nonlocal zigzag analytical solution for Laplacian hygrothermal stress analysis of annular sandwich macro/nanoplates with poor adhesions and 2D-FGM porous cores", Archiv. Civil Mech. Eng., 19(4), 1211-1234. https://doi.org/10.1016/j.acme.2019.06.008
  6. Alshorbagy, A.E., Eltaher, M.A. and Mahmoud, F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Mathem. Modelling, 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006.
  7. Al-Zahrani, M.A., Asiri, S.A., Ahmed, K.I. and Eltaher, M.A. (2022), "Free vibration analysis of 2D functionally graded strip beam using finite element meth", J. Appl. Comput. Mech., 8(4), 1422-1430.
  8. Arefi, M., Mohammad-Rezaei Bidgoli, E. and Zenkour, A.M. (2019), "Free vibration analysis of a sandwich nano-plate including FG core and piezoelectric face-sheets by considering neutral surface", Mech. Adv. Mater. Struct., 26(9), 741-752. https://doi.org/10.1080/15376494.2018.1455939.
  9. Arshid, E., Kiani, A. and Amir, S. (2019), "Magneto-electro-elastic vibration of moderately thick FG annular plates subjected to multi physical loads in thermal environment using GDQ method by considering neutral surface", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233(10), 2140-2159. https://doi.org/10.1177/1464420719832626
  10. Assie, A.E., Mohamed, S.M., Shanab, R.A., Abo-bakr, R.M. and Eltaher, M.A. (2023), "Static buckling of 2D FG porous plates resting on elastic foundation based on unified shear theories", J. Appl. Comput. Mech., 9(1), 239-258. https://doi.org/10.22055/jacm.2022.41265.3723.
  11. Attia, M.A. and Mohamed, S. (2022), "Thermal vibration characteristics of pre/post-buckled bi-directional functionally graded tapered microbeams based on modified couple stress Reddy beam theory", Eng. Comput., 38, 2079-2105. https://doi.org/10.1007/s00366-020-01188-4.
  12. Babaei, H. and Eslami, M.R. (2021), "Nonlinear analysis of thermal-mechanical coupling bending of FGP infinite length cylindrical panels based on PNS and NSGT", Appl. Mathem. Modelling, 91, 1061-1080. https://doi.org/10.1016/j.apm.2020.10.004.
  13. Babaei, H. and Eslami, M.R. (2021), "Nonlinear analysis of thermal-mechanical coupling bending of FGP infinite length cylindrical panels based on PNS and NSGT", Appl. Mathem. Modelling, 91, 1061-1080. https://doi.org/10.1016/j.apm.2020.10.004.
  14. Babaei, H., Kiani, Y. and Eslami, M.R. (2021), "Large amplitude free vibrations of FGM beams on nonlinear elastic foundation in thermal field based on neutral/mid-plane formulations", Iran. J. Sci. Technol., Transact. Mech. Eng., 45(3), 611-630. https://doi.org/10.1007/s40997-020-00389-y.
  15. Barati, M.R. and Shahverdi, H. (2017), "An analytical solution for thermal vibration of compositionally graded nanoplates with arbitrary boundary conditions based on physical neutral surface position", Mech. Adv. Mater. Struct., 24(10), 840-853. http://dx.doi.org/10.1080/15376494.2016.1196788.
  16. Basha, M., Daikh, A.A., Melaibari, A., Wagih, A., Othman, R., Almitani, K.H. and Eltaher, M.A. (2022), "Nonlocal strain gradient theory for buckling and bending of FG-GRNC laminated sandwich plates", Steel Compos. Struct., 43(5), 639-660. https://doi.org/10.12989/scs.2022.43.5.639.
  17. Benferhat, R., Daouadji, T.H. and Mansour, M.S. (2016), "Free vibration analysis of FG plates resting on an elastic foundation and based on the neutral surface concept using higher-order shear deformation theory", Comptes Rendus Mecanique, 344(9), 631-641. http://dx.doi.org/10.1016/j.crme.2016.03.002.
  18. Chinnapandi, L.B.M., Pitchaimani, J. and Eltaher, M.A. (2022), "Vibro-acoustics of functionally graded porous beams subjected to thermo-mechanical loads", Steel Compos. Struct., 44(6), 829-843.
  19. Chu, L., Dui, G. and Zheng, Y. (2020), "Thermally induced nonlinear dynamic analysis of temperature-dependent functionally graded flexoelectric nanobeams based on nonlocal simplified strain gradient elasticity theory", Europ. J. Mech. A/Solids, 82, 103999. https://doi.org/10.1016/j.euromechsol.2020.103999.
  20. Coskun, S., Kim, J. and Toutanji, H. (2019), "Bending, free vibration, and buckling analysis of functionally graded porous micro-plates using a general third-order plate theory", J. Compos. Sci., 3(1), 15. https://doi.org/10.3390/jcs3010015.
  21. Cuong-Le, T., Nguyen, K.D., Hoang-Le, M., Sang-To, T., Phan-Vu, P. and Wahab, M.A. (2022), "Nonlocal strain gradient IGA numerical solution for static bending, free vibration and buckling of sigmoid FG sandwich nanoplate", Physica B: Condensed Matter, 631, 413726. https://doi.org/10.1016/j.physb.2022.413726.
  22. Daikh, A.A., Belarbi, M.O., Khechai, A., Li, L., Ahmed, H.M. and Eltaher, M.A. (2023), "Buckling of bi-coated functionally graded porous nanoplates via a nonlocal strain gradient quasi-3D theory", Acta Mechanica, 1-24. https://doi.org/10.1007/s00707-023-03548-9.
  23. Daikh, A.A., Houari, M.S.A., Belarbi, M.O., Chakraverty, S. and Eltaher, M.A. (2022), "Analysis of axially temperature-dependent functionally graded carbon nanotube reinforced composite plates", Eng. Comput., 38, 2533-2554. https://doi.org/10.1007/s00366-021-01413-8.
  24. Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013a), "Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams", Compos. Struct., 99, 193-201. https://doi.org/10.1016/j.compstruct.2012.11.039
  25. Eltaher, M.A., Mahmoud, F.F., Assie, A.E. and Meletis, E. (2013b), "Coupling effects of nonlocal and surface energy on vibration analysis of nanobeams", Appl. Mathem. Comput., 224, 760-774. https://doi.org/10.1016/j.amc.2013.09.002.
  26. Eltaher, M.A., Khairy, A., Sadoun, A.M. and Omar, F.A. (2014a), "Static and buckling analysis of functionally graded Timoshenko nanobeams", Appl. Mathem. Comput., 229, 283-295. https://doi.org/10.1016/j.amc.2013.12.072.
  27. Eltaher, M.A., Abdelrahman, A.A., Al-Nabawy, A., Khater, M. and Mansour, A. (2014b), "Vibration of nonlinear graduation of nano-Timoshenko beam considering the neutral axis position", Appl. Mathem. Comput., 235, 512-529. https://doi.org/10.1016/j.amc.2014.03.028.
  28. Eltaher, M.A., Fouda, N., El-midany, T. and Sadoun, A.M. (2018), "Modified porosity model in analysis of functionally graded porous nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40, 1-10. https://doi.org/10.1007/s40430-018-1065-0.
  29. Esen, I., Eltaher, M.A. and Abdelrahman, A.A. (2023), "Vibration response of symmetric and sigmoid functionally graded beam rested on elastic foundation under moving point mass", Mech. Based Des. Struct. Machines, 51(5), 2607-2631. https://doi.org/10.1080/15397734.2021.1904255.
  30. Farzam-Rad, S.A., Hassani, B. and Karamodin, A. (2017), "Isogeometric analysis of functionally graded plates using a new quasi-3D shear deformation theory based on physical neutral surface", Compos. Part B: Eng., 108, 174-189. https://doi.org/10.1016/j.compositesb.2016.09.029.
  31. Fernando, D., Wang, C.M. and Chowdhury, A.R. (2018), "Vibration of laminated-beams based on reference-plane formulation: Effect of end supports at different heights of the beam", Eng. Struct., 159, 245-251. https://doi.org/10.1016/j.engstruct.2018.01.004.
  32. Ghandourh, E.E. and Abdraboh, A.M. (2020), "Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models", Steel Compos. Struct., 36(3), 293-305. https://doi.org/10.12989/scs.2020.36.3.293.
  33. Ghandourah, E.E., Ahmed, H.M., Eltaher, M.A., Attia, M.A. and Abdraboh, A.M. (2021), "Free vibration of porous FG nonlocal modified couple nanobeams via a modified porosity model", Adv. Nano Res., 11(4), 405-422. https://doi.org/10.12989/anr.2021.11.4.405.
  34. Hai Van, N.T. and Hong, N.T. (2023), "Novel finite element modeling for free vibration and buckling analysis of non-uniform thickness 2D-FG sandwich porous plates using refined Quasi 3D theory", Mech. Based Des. Struct. Machines, 1-27. https://doi.org/10.1080/15397734.2023.2197035.
  35. Han, S.C., Park, W.T. and Jung, W.Y. (2015), "A four-variable refined plate theory for dynamic stability analysis of S-FGM plates based on physical neutral surface", Compos. Struct., 131, 1081-1089. https://doi.org/10.1016/j.compstruct.2015.06.025.
  36. Hashemi, S. and Jafari, A.A. (2020), "Nonlinear free and forced vibrations of in-plane bi-directional functionally graded rectangular plate with temperature-dependent properties", Int. J. Struct. Stab. Dyn., 20(08), 2050097. https://doi.org/10.1142/S0219455420500972.
  37. Hashemi, S., Shahri, P.K., Beigzadeh, S., Zamani, F., Eratbeni, M. G., Mahdavi, M. and Abadi, M.R.R. (2022), "Nonlinear free vibration analysis of In-plane Bi-directional functionally graded plate with porosities resting on elastic foundations", Int. J. Appl. Mech., 14(01), 2150131. https://doi.org/10.1142/S1758825121501313.
  38. Hong, N.T. (2020), "Nonlinear static bending and free vibration analysis of bidirectional functionally graded material plates", Int. J. Aeros. Eng., 2020, 1-16. https://doi.org/10.1155/2020/8831366.
  39. Hu, Z., Shi, Y., Xiong, S., Zheng, X. and Li, R. (2023), "New analytic free vibration solutions of non-Levy-type porous FGM rectangular plates within the symplectic framework", Thin-Wall. Struct., 185, 110609. https://doi.org/10.1016/j.tws.2023.110609.
  40. Kaplunov, J., Erbas, B. and Ege, N. (2022), "Asymptotic derivation of 2D dynamic equations of motion for transversely inhomogeneous elastic plates", Int. J. Eng. Sci., 178, 103723. https://doi.org/10.1016/j.ijengsci.2022.103723.
  41. Karamanli, A., Aydogdu, M. and Vo, T.P. (2021), "A comprehensive study on the size-dependent analysis of strain gradient multi-directional functionally graded microplates via finite element model", Aeros. Sci. Technol., 111, 106550. https://doi.org/10.1016/j.ast.2021.106550.
  42. Karamanli, A., Eltaher, M.A., Thai, S. and Vo, T.P. (2023), "Transient dynamics of 2D-FG porous microplates under moving loads using higher order finite element model", Eng. Struct., 278, 115566. https://doi.org/10.1016/j.engstruct.2022.115566.
  43. Larbi, L.O., Kaci, A., Houari, M.S.A. and Tounsi, A. (2013), "An efficient shear deformation beam theory based on neutral surface position for bending and free vibration of functionally graded beams", Mech. Based Des. Struct. Machines, 41(4), 421-433. https://doi.org/10.1080/15397734.2013.763713.
  44. Li, J., Wang, G., Guan, Y., Zhao, G., Lin, J., Naceur, H. and Coutellier, D. (2021), "Meshless analysis of bi-directional functionally graded beam structures based on physical neutral surface", Compos. Struct., 259, 113502. https://doi.org/10.1016/j.compstruct.2020.113502.
  45. Ling, J., Yang, D.S., Wang, H. Y., Dai, Z.R. and Zeng, H. (2023), "An efficient hybrid boundary-type weak-form meshfree algorithm for 2D thermal analysis in inhomogeneous functionally graded materials", Eng. Anal. Bound. Elements, 152, 496-503. https://doi.org/10.1016/j.enganabound.2023.04.033.
  46. Melaibari, A., Mohamed, S.A., Assie, A.E., Shanab, R.A. and Eltaher, M.A. (2022), "Static response of 2D FG porous plates resting on elastic foundation using midplane and neutral surfaces with movable constraints", Mathematics, 10(24), 4784. https://doi.org/10.3390/math10244784.
  47. Melaibari, A., Mohamed, S.A., Assie, A.E., Shanab, R.A. and Eltaher, M.A. (2023), "Mathematical and physical analyses of middle/neutral surfaces formulations for static response of bi-directional FG plates with movable/immovable boundary conditions", Mathematics, 11(1), 2. https://doi.org/10.3390/math11010002.
  48. Mohamed, S.A. (2020), "A fractional differential quadrature method for fractional differential equations and fractional eigenvalue problems", Mathem. Meth. Appl. Sci., https://doi.org/10.1002/mma.6753.
  49. Mohamed, S.A., Mohamed, N.A. and Abo-Hashem, S.I. (2021), "A novel differential-integral quadrature method for the solution of nonlinear integro-differential equations", Mathem. Meth. Appl. Sci., 44(18), 13945-13967. https://doi.org/10.1002/mma.7667.
  50. Mohamed, S., Assie, A.E., Mohamed, N. and Eltaher, M.A. (2022), "Static and stress analyses of bi-directional FG porous plate using unified higher order kinematics theories", Steel Compos. Struct., 45(3), 305-330. https://doi.org/10.12989/SCS.2022.45.3.305
  51. Muc, A. and Flis, J. (2021), "Flutter characteristics and free vibrations of rectangular functionally graded porous plates", Compos. Struct., 261, 113301. https://doi.org/10.1016/j.compstruct.2020.113301.
  52. Nemat-Alla, M., Ahmed, K.I. and Hassab-Allah, I. (2009), "Elastic-plastic analysis of two-dimensional functionally graded materials under thermal loading", Int. J. Solids Struct., 46(14-15), 2774-2786. https://doi.org/10.1016/j.ijsolstr.2009.03.008.
  53. Peng, L.X., Chen, S.Y., Wei, D.Y., Chen, W. and Zhang, Y.S. (2022), "Static and free vibration analysis of stiffened FGM plate on elastic foundation based on physical neutral surface and MK method", Compos. Struct., 290, 115482. https://doi.org/10.1016/j.compstruct.2022.115482.
  54. Ramteke, P.M. and Panda, S.K. (2023), "Computational Modelling and Experimental Challenges of Linear and Nonlinear Analysis of Porous Graded Structure: A Comprehensive Review", Arch. Comput. Meth. Eng., 1-16. https://doi.org/10.1007/s11831-023-09908-x.
  55. Reddy, J.N. (2007), "Free vibration analysis of functionally graded ceramic-metal plates", Anal. Des. Plated Struct., 293-321. Woodhead Publishing. https://doi.org/10.1533/9781845692292.293.
  56. Saini, R. and Lal, R. (2022), "Axisymmetric vibrations of temperature-dependent functionally graded moderately thick circular plates with two-dimensional material and temperature distribution", Eng. Comput., 38, 437-452. https://doi.org/10.1007/s00366-020-01056-1.
  57. Shafiei, N., Mirjavadi, S.S., MohaselAfshari, B., Rabby, S. and Kazemi, M. (2017), "Vibration of two-dimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams", Comput. Meth. Appl. Mech. Eng., 322, 615-632. https://doi.org/10.1016/j.cma.2017.05.007.
  58. Shahverdi, H. and Barati, M.R. (2017), "Vibration analysis of porous functionally graded nanoplates", Int. J. Eng. Sci., 120, 82-99. http://dx.doi.org/10.1016/j.ijengsci.2017.06.008.
  59. She, G.L., Ding, H.X. and Zhang, Y.W. (2022), "Wave propagation in a FG circular plate via the physical neutral surface concept", Struct. Eng. Mech., 82(2), 225-232. https://doi.org/10.12989/sem.2022.82.2.225.
  60. Shu, C. (2012). Differential Quadrature and Its Application in Engineering. Springer Science & Business Media.
  61. Singh, B.N., Ranjan, V. and Hota, R.N. (2022), "Vibroacoustic response of mode localized thin functionally graded plates using physical neutral surface", Compos. Struct., 287, 115301. https://doi.org/10.1016/j.compstruct.2022.115301.
  62. Singha, M.K., Prakash, T. and Ganapathi, M. (2011), "Finite element analysis of functionally graded plates under transverse load", Finite Elements Anal. Des., 47(4), 453-460. https://doi.org/10.1016/j.finel.2010.12.001.
  63. Soliman, A.E., Eltaher, M.A., Attia, M.A. and Alshorbagy, A.E. (2018), "Nonlinear transient analysis of FG pipe subjected to internal pressure and unsteady temperature in a natural gas facility", Struct. Eng. Mech., 66(1), 85-96. https://doi.org/10.12989/sem.2018.66.1.085.
  64. Tati, A. (2021), "A five unknowns high order shear deformation finite element model for functionally graded plates bending behavior analysis", J. Brazil. Soc. Mech. Sci. Eng., 43(1), 1-14. https://doi.org/10.1007/s40430-020-02736-1.
  65. Thang, P.T., Do, D.T., Nguyen, T.T., Lee, J. and Nguyen-Thoi, T. (2022), "Free vibration characteristic analysis of functionally graded shells with porosity and neutral surface effects", Ocean Eng., 255, 111377. https://doi.org/10.1016/j.oceaneng.2022.111377.
  66. Turker, H.T. (2022), "A modified beam theory for bending of eccentrically supported beams", Mech. Based Des. Struct. Machines, 50(2), 576-587. https://doi.org/10.1080/15397734.2020.1738246.
  67. Van Do, T., Doan, D.H., Duc, N.D. and Bui, T.Q. (2017), "Phase-field thermal buckling analysis for cracked functionally graded composite plates considering neutral surface", Compos. Struct., 182, 542-548. https://doi.org/10.1016/j.compstruct.2017.09.059.
  68. Wang, C.M., Ke, L., Chowdhury, A.R., Yang, J., Kitipornchai, S. and Fernando, D. (2017), "Critical examination of midplane and neutral plane formulations for vibration analysis of FGM beams", Eng. Struct., 130, 275-281. https://doi.org/10.1016/j.engstruct.2016.10.051.
  69. Wang, C., Koh, J.M., Yu, T., Xie, N.G. and Cheong, K.H. (2020), "Material and shape optimization of bi-directional functionally graded plates by GIGA and an improved multi-objective particle swarm optimization algorithm", Comput. Meth. Appl. Mech. Eng., 366, 113017. https://doi.org/10.1016/j.cma.2020.113017.
  70. Yang, T., Tang, Y., Li, Q. and Yang, X.D. (2018), "Nonlinear bending, buckling and vibration of bi-directional functionally graded nanobeams", Compos. Struct., 204, 313-319. https://doi.org/10.1016/j.compstruct.2018.07.045.
  71. Yin, S., Yu, T. and Liu, P. (2013), "Free vibration analyses of FGM thin plates by isogeometric analysis based on classical plate theory and physical neutral surface", Adv. Mech. Eng., 5, 634584. https://doi.org/10.1155/2013/634584.
  72. Zenkour, A.M. (2006), "Generalized shear deformation theory for bending analysis of functionally graded plates", Appl. Mathem. Modelling, 30(1), 67-84. https://doi.org/10.1016/j.apm.2005.03.009.
  73. Zhang, D.G. (2013), "Modeling and analysis of FGM rectangular plates based on physical neutral surface and high order shear deformation theory", Int. J. Mech. Sci., 68, 92-104. http://dx.doi.org/10.1016/j.ijmecsci.2013.01.002.
  74. Zhang, D.G. and Zhou, Y.H. (2008), "A theoretical analysis of FGM thin plates based on physical neutral surface", Comput. Mater. Sci., 44(2), 716-720. https://doi.org/10.1016/j.commatsci.2008.05.016