DOI QR코드

DOI QR Code

Field measurement study on snow accumulation process around a cube during snowdrift

  • Wenyong Ma (State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang Tiedao University) ;
  • Sai Li (School of Civil Engineering, Shijiazhuang Tiedao University) ;
  • Xuanyi Zhou (State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University) ;
  • Yuanchun Sun (China Railway Design Corporation) ;
  • Zihan Cui (School of Civil Engineering, Shijiazhuang Tiedao University) ;
  • Ziqi Tang (Shijiazhuang No.2 High School)
  • 투고 : 2021.11.07
  • 심사 : 2023.04.20
  • 발행 : 2023.07.25

초록

Due to the complexity and difficulty in meeting the multiphase flow complexity, similarity, and multiscale characteristics, the mechanism of snow drift is so complicated that the snow deposition prediction is still inaccurate and needs to be far improved. Meanwhile, the validation of prediction methods is also limited due to a lack of field-measured data about snow deposition. To this end, a field measurement activity about snow deposition around a cube with time was carried out, and the snow accumulation process was measured under blowing snow conditions in northwest China. The maximum snow depth, snow profile, and variation in snow depth around the cube were discussed and analyzed. The measured results indicated three stages of snow accumulation around the cube. First, snow is deposited in windward, lateral and leeward regions, and then the snow depth in windward and lateral regions increases. Secondly, when the snow in the windward region reaches its maximum, the downwash flow erodes the snow against the front wall. Meanwhile, snow range and depth in lateral regions have a significant increase. Thirdly, a narrow road in the leeward region is formed with the increase in snow range and depth, which results in higher wind speed and reforming snow deposition there. The field measurement study in this paper not only furthers understanding of the snow accumulation process instead of final deposition under complex conditions but also provides an important benchmark for validating prediction methods.

키워드

과제정보

The study conducted for this paper was supported by the Natural Science Foundation (Grant No. 52278511) and the Natural Science Foundation of Hebei Province (Grant No. E2021210053).

참고문헌

  1. Bagnold, R.A. (1940), "Beach formation by waves: Some model experiments in a wave tank. (includes photographs)", J. Institution Civil Eng., 15(1), 27-52. https://doi.org/10.1680/ijoti.1940.14279.
  2. Becker, A. (1944), "Natural snow fences along roads", Bautechnik, 22, 37-42.
  3. Beyers, J.H.M. and Harms, T.M. (2003), "Outdoors modelling of snowdrift at SANAE IV Research Station, Antarctica", J. Wind Eng. Ind. Aerod., 91(4), 551-569. https://doi.org/10.1016/S0167-6105(02)00409-9.
  4. Beyers, J.H.M., Sundsbo, P.A. and Harms, T.M. (2004), "Numerical simulation of three-dimensional, transient snow drifting around a cube", J. Wind Eng. Ind. Aerod., 92(9), 725-747. https://doi.org/10.1016/j.jweia.2004.03.011.
  5. Boutanios, Z. and Jasak, H. (2017), "Two-way coupled Eulerian-Eulerian simulations of drifting snow with viscous treatment of the snow phase", J. Wind Eng. Ind. Aerod., 169, 67-76. https://doi.org/10.1016/j.jweia.2017.07.006.
  6. Dery, S.J. and Taylor, P.A. (1996), "Some aspects of the interaction of blowing snow with the atmospheric boundary layer", Hydrol. Process., 10(10), 1345-1358. https://doi.org/10.1002/(SICI)1099-085(199610)10:10<1345::AID-HYP465>3.0.CO;2-2
  7. Ding, M., Zhang, T., Xiao, C., Li, C., Jin, B., Bian, L. and Qin, D. (2017), "Snowdrift effect on snow deposition: Insights from a comparison of a snow pit profile and meteorological observations in east Antarctica", Sci. China Earth Sci., 60(4), 672-685. https://doi.org/10.1007/s11430-016-0008-4.
  8. Finney, E.A. (1940), "Snow drift control by highway design; results of wind tunnel investigations interpreted", Roads Streets, 83(3), 45-48.
  9. Font, D., Sato, T., Kosugi, K., Sato, A. and Vilaplana, J.M. (2001), "Mass-flux measurements in a cold wind tunnel: comparison of the mechanical traps with a snow-particle counter", Ann. Glaciol., 32, 121-124. https://doi.org/10.3189/172756401781819102.
  10. Hawley, R.L. and Millstein, J.D. (2019), "Quantifying snow drift on Arctic structures: A case study at Summit, Greenland, using UAV-based structure-from-motion photogrammetry", Cold Reg. Sci. Technol., 157, 163-170. https://doi.org/10.1016/j.coldregions.2018.10.007.
  11. Heywood, H. (1941), "The physics of blown sand and desert dunes", Nature, 148, 480-481. https://doi.org/10.1038/148480a0.
  12. Iversen, J. . (1980), "Drifting-snow similitude-transport-rate and roughness modeling", J. Glaciol., 26(94), 393-403. https://doi.org/10.3189/S0022143000010923.
  13. JDoorschot, J.J., Lehning, M. and Vrouwe, A. (2004), "Field measurements of snow-drift threshold and mass fluxes, and related model simulations", Bound-Lay Meteorol., 113(3), 347-368. https://doi.org/10.1007/s10546-004-8659-z.
  14. Kang, L., Zhou, X., van Hooff, T., Blocken, B. and Gu, M. (2018), "CFD simulation of snow transport over flat, uniformly rough, open terrain: Impact of physical and computational parameters", J. Wind Eng. Ind. Aerod., 177, 213-226. https://doi.org/10.1016/j.jweia.2018.04.014.
  15. Kinar, N.J. (2017), "Modeling blowing snow accumulation downwind of an obstruction: The O hara Eulerian particle distribution equation", Water Resour. Res., 53(5), 3557-3564. https://doi.org/10.1002/2017WR020731.
  16. Kind, R.J. (1976), "A critical examination of the requirements for model simulation of wind-induced erosion/deposition phenomena such as snow drifting.", Atmos. Environ., 10(3), 219-227. https://doi.org/10.1016/0004-6981(76)90094-9.
  17. Liu, D., Li, Y., Wang, B., Hu, P. and Zhang, J. (2016), "Mechanism and effects of snow accumulations and controls by lightweight snow fences", J. Mod. Transp., 24(4), 261-269. https://doi.org/10.1007/s40534-016-0115-5.
  18. Lu, X., Huang, N. and Tong, D. (2012), "Wind tunnel experiments on natural snow drift", Sci. China Technol. Sci., 55(4), 927-938. https://doi.org/10.1007/s11431-011-4731-3.
  19. Ma, W., Li, F. and Zhou, X. (2021), "An empirical model of snowdrift based on field measurements: Profiles of the snow particle size and mass flux", Cold Reg. Sci. Technol., 189, 103312. https://doi.org/10.1016/j.coldregions.2021.103312.
  20. Ma, W., Li, F., Sun, Y., Li, J. and Zhou, X. (2021), "Field measurement and numerical simulation of snow deposition on an embankment in snowdrift", Wind. Struct., 32(5), 453-469. https://doi.org/10.12989/was.2021.32.5.453.
  21. Mellor, M. and Fellers, G. (1986), Concentration and Flux of Wind-Blown Snow, 86(11), US Army Corps of Engineers, Cold Regions Research & Engineering Laboratory.
  22. Naaim-Bouvet, F. (1995), "Comparison of requirements for modeling snowdrift in the case of outdoor and wind tunnel experiments", Surv. Geophys., 16(5-6), 711-727. https://doi.org/10.1007/BF00665750.
  23. Nemoto, M., Sato, T., Kosugi, K. and Mochizuki, S. (2014), "Effects of snowfall on drifting snow and wind structure near a surface", Bound-Lay Meteorol., 152(3), 395-410. https://doi.org/10.1007/s10546-014-9924-4.
  24. Nishimura, K., Yokoyama, C., Ito, Y., Nemoto, M., Naaim-Bouvet, F., Bellot, H. and Fujita, K. (2014), "Snow particle speeds in drifting snow", J. Geophy. Res. Atmos., 119(16), 9901-9913. https://doi.org/10.1002/2014JD021686.
  25. Oikawa, S. and Tomabechi, T. (2003), "Formation processes of the deposition and erosion of snow around a model building", J. Japanese Soc. Snow Ice, 65(3), 207-218. https://doi.org/10.5331/seppyo.65.207.
  26. Oikawa, S. and Tomabechi, T. (2003), "Formation processes of the deposition and erosion of snow around a model building", J. Japan. Soc. Snow Ice, 65(3), 207-218. https://doi.org/10.5331/seppyo.65.207.
  27. Oikawa, S., Tomabechi, T. and Ishihara, T. (1999), "One-day observations of snowdrifts around a model cube", J. Snow Eng. Japan, 15(4), 283-291. https://doi.org/10.4106/jsse.15.4_283.
  28. Okaze, T., Mochida, A., Tominaga, Y., Nemoto, M., Sato, T., Sasaki, Y. and Ichinohe, K. (2012), "Wind tunnel investigation of drifting snow development in a boundary layer", J. Wind Eng. Ind. Aerod., 104, 532-539. https://doi.org/10.1016/j.jweia.2012.04.002.
  29. Pomeroy, J.W. and Gray, D.M. (1990), "Saltation of snow", Water Resour. Res., 26(7), 1583-1594. https://doi.org/10.1029/WR026i007p01583.
  30. Qiang, S., Zhou, X., Kosugi, K. and Gu, M., (2019), "A study of snow drifting on a flat roof during snowfall based on simulations in a cryogenic wind tunnel", J. Wind Eng. Ind. Aerod., 188, 269-279. https://doi.org/10.1016/j.jweia.2019.02.022.
  31. Strom, G.H. and Kelly, G.R. (1962), "Scale model studies on snow drifting", Cold Regions Res. Eng. Lab Hanover, Nh. https://hdl.handle.net/11681/2765.
  32. Tominaga, Y. (2018), "Computational fluid dynamics simulation of snowdrift around buildings: Past achievements and future perspectives", Cold Reg. Sci. Technol., 150, 2-14. https://doi.org/10.1016/j.coldregions.2017.05.004.
  33. Tominaga, Y., Mochida, A., Yoshino, H., Shida, T. and Okaze, T. (2006), "CFD prediction of snowdrift around a cubic building model", The Fourth International Symposium on Computational Wind Engineering (CWE2006), Yokohama, Japan, July.
  34. Tominaga, Y., Okaze, T. and Mochida, A. (2011), "CFD modeling of snowdrift around a building: An overview of models and evaluation of a new approach", Build. Environ., 46(4), 899-910. https://doi.org/10.1016/j.buildenv.2010.10.020.
  35. Tsuchiya, M., Tomabechi, T., Hongo, T. and Ueda, H. (2002), "Wind effects on snowdrift on stepped flat roofs", J. Wind Eng. Ind. Aerod., 90(12-15), 1881-1892. https://doi.org/10.1016/S0167-6105(02)00295-7.
  36. Xiao, C., Qin, D., Bian, L., Zhou, X., Allison, I. and Yan, M. (2005), "A precise monitoring of snow surface height in the region of Lambert Glacier basin-Amery Ice Shelf, East Antarctica", Sci. China Series D: Earth Sci., 48(1), 100-111. https://doi.org/10.1360/03yd0127.
  37. Yan, K.Q., Zhou, X.Y. and Gu, M. (2010), "Outdoor test of wind-drifted snow distribution around a cube", Key Eng. Mater., 439, 1349-1354. https://doi.org/10.4028/www.scientific.net/KEM.439-440.1349.
  38. Zhou, X., Hu, J. and Gu, M. (2014), "Wind tunnel test of snow loads on a stepped flat roof using different granular materials", Nat. Haz., 74(3), 1629-1648. https://doi.org/10.1007/s11069-014-1296-z.
  39. Zhou, X., Kang, L., Gu, M., Qiu, L. and Hu, J. (2016), "Numerical simulation and wind tunnel test for redistribution of snow on a flat roof", J. Wind Eng. Ind. Aerod., 153, 92-105. https://doi.org/10.1016/j.jweia.2016.03.008.
  40. Zhou, X., Kang, L., Yuan, X. and Gu, M. (2016), "Wind tunnel test of snow redistribution on flat roofs", Cold Reg. Sci. Technol., 127, 49-56. https://doi.org/10.1016/j.coldregions.2016.04.006.
  41. Zwaaftink, C.G., Diebold, M., Horender, S., Overney, J., Lieberherr, G., Parlange, M.B. and Lehning, M. (2014), "Modelling small-scale drifting snow with a Lagrangian stochastic model based on large-eddy simulations", Bound. Lay. Meteorol., 153(1), 117-139. https://doi.org/10.1007/s10546-014-9934-2.