DOI QR코드

DOI QR Code

Influence of trailing edge serration in the wake characteristics of S809 airfoil

  • Received : 2022.08.10
  • Accepted : 2023.04.16
  • Published : 2023.07.25

Abstract

The wake behavior of extended flat plate and serration in the trailing edge of S809 airfoil is presented in this experimental study using wind tunnel testing. The clustering of wind turbines in wind parks has recently been a pressing issue, due to the expected increase in power output and deciding the number of wind turbines to be installed. One of the prominent factors which influence the performance of the subsequent wind turbines is the downstream wake characteristics. A series of wind tunnel investigations were performed to assess the downstream near wake characteristics of the S809 airfoil at various angles of attack corresponding to the Reynolds Number Re = 2.02 × 105. These experimental results revealed the complex nature of the downstream near wake characteristics featuring substantial asymmetry arising out of the incoherent flow separations prevailing over the suction and the pressure sides of the airfoil. Based on the experimental results, it is found that the wake width and the downstream velocity ratio decrease with an increase in the angle of attack. Nonetheless, the dissipation length and downstream velocity ratio increases proportionally in the downstream direction. Additionally, attempts were made to understand the physical nature of the near wake characteristics at 1C, 2C, 3C and 4C downstream locations.

Keywords

Acknowledgement

This research work was supported by the Science Engineering Research Board (SERB), Department of Science & Technology (DST), Government of India, File No: CRG/2021/005720.

References

  1. Aakhash., Arunvinthan,S., Pasha, A.A. and Nadarajapillai, S. (2021), "Effect of ice acceleration on the aerodynamic characteristics of wind turbine blades", Wind Struct., 32(3), 205-217. https://doi.org/https://doi.org/10.12989/was.2021.32.3.205.
  2. AbdelSalam, A.M. and Ramalingam, V. (2014), "Wake prediction of horizontal-axis wind turbine using full-rotor modeling", J. Wind Eng. Ind. Aerod., 124, 7-19. https://doi.org/10.1016/j.jweia.2013.11.005.
  3. Aubrun, S., Loyer, S., Hancock, P.E. and Hayden, P. (2013), "Wind turbine wake properties: Comparison between a non-rotating simplified wind turbine model and a rotating model", J. Wind Eng. Ind. Aerod., 120, 1-8. https://doi.org/10.1016/j.jweia.2013.06.007.
  4. Aubrun, S., Loyer, S., Hancock, P.E., Hayden, P. (2013), "Wind turbine wake properties: Comparison between a non-rotating simplified wind turbine model and a rotating model", J. Wind Eng. Ind. Aerod., 120, 1-8. https://doi.org/10.1016/j.jweia.2013.06.007.
  5. Balaji, G., Pillai, S.N. and Kumar, C.S. (2017), "Wind tunnel investigation of downstream wake characteristics on circular cylinder with various taper ratios", J. Appl. Fluid Mech., 10(SpecialIssue), 69-77. https://doi.org/10.36884/jafm.10.SI.28272.
  6. Chen, W., Qiao, W. and Wei, Z. (2020), "Aerodynamic performance and wake development of airfoils with wavy leading edges", Aeros. Sci. Technol., 106, 106216. https://doi.org/10.1016/j.ast.2020.106216.
  7. Gruber, M. (2012), Aerofoil Noise Reduction by Edge Treatments, Ph.D. Dissertation, University of Southampton.
  8. Ichenial, M.M. and Elhajjaji, A. (2019), "Investigation of the impact of planetary boundary layer turbulence on the performance of onshore wind farm", Procedia Manufact., 32, 991-999. https://doi.org/10.1016/j.promfg.2019.02.313.
  9. Liu, X., Jawahar, H.K. and Azarpeyvand, M. (2016), "Wake development of airfoils with serrated trailing edges", 22nd AIAA/CEAS Aeroacoustics Conference, https://doi.org/10.2514/6.2016-2817.
  10. Liu, X., Jawahar, H.K. and Azarpeyvand, M. (2016), "Wake development of airfoils with serrated trailing edges", 22nd AIAA/CEAS Aeroacoustics Conf. 2016. 1-21. https://doi.org/10.2514/6.2016-2817.
  11. Liu, X., Jawahar, H.K., Azarpeyvand, M. (2016), "Wake development of airfoils with serrated trailing edges", 22nd AIAA/CEAS Aeroacoustics Conf., https://doi.org/10.2514/6.2016-2817.
  12. Livya, E. and Pillai, N. (2022), "Effect of trailing-edge modification over aerodynamic characteristics of NACA 0020 airfoil", Wind Struct., 33(6), 463-470. https://doi.org/10.12989/was.2021.33.6.463.
  13. Madhavan, N.K. and Rai, M.M. (2009), "Direct numerical simulation of the turbulent wake of an infinitely thin flat plate", 45th AIAA/ASME/SAE/ASEE Jt. Propuls. Conf. Exhib. 1-19. https://doi.org/10.2514/6.2009-4929.
  14. Mano, S., Arunvinthan, S. and Nadaraja Pillai, S. (2020), "Experimental investigation of downstream wake characteristics of NACA 0015 Airfoil", J. Appl. Sci. Eng., 23(4), 603-609. https://doi.org/10.6180/jase.202012_23(4).0004.
  15. Nedic, J. and Vassilicos, J.C. (2015), "Vortex shedding and aerodynamic performance of airfoil with multiscale trailing-edge modifications", AIAA J., 53(11), 3240-3250. https://doi.org/10.2514/1.J053834.
  16. Orlando, S., Bale, A. and Johnson, D.A. (2011), "Experimental study of the effect of tower shadow on anemometer readings", J. Wind Eng. Ind. Aerod., 99(1), 1-6. https://doi.org/10.1016/j.jweia.2010.10.002.
  17. Posa, A. (2020), "Dependence of the wake recovery downstream of a Vertical Axis Wind Turbine on its dynamic solidity", J. Wind Eng. Ind. Aerod., 202, 104212. https://doi.org/10.1016/j.jweia.2020.104212.
  18. Posa, A. (2020), "Dependence of the wake recovery downstream of a vertical axis wind turbine on its dynamic solidity", J. Wind Eng. Ind. Aerod., 202, 104212. https://doi.org/10.1016/j.jweia.2020.104212.
  19. Raatan, V.S., Ramaswami, S., Mano, S. and Pillai, S.N. (2022), "Effect of stall delay characteristics of symmetrical aerofoil using lateral circular ridges", Wind Struct., 34(4), 385-394. https://doi.org/10.12989/WAS.2022.34.4.385.
  20. Rai, M.M. (2018), "Shed vortex structure and phase-averaged velocity statistics in symmetric/asymmetric turbulent flat plate wakes", Phys. Fluids, 30. https://doi.org/ 10.1063/1.5025946.
  21. Sanderse, B., van der Pijl, S.P. and Koren, B. (2010), "Review of CFD for wind-turbine wake aerodynamics", Wake Modelling, 1-28. http://oai.cwi.nl/oai/asset/17492/17492A.pdf.
  22. Sherry, M., Nemes, A., Lo Jacono, D., Blackburn, H.M. and Sheridan, J. (2013), "The interaction of helical tip and root vortices in a wind turbine wake", Phys. Fluids, 25(11). https://doi.org/10.1063/1.4824734.
  23. Sun, K., Sun, J., Fan, Y., Han, Z. and Chen, W. (2021), "Passive control on the wake of a thin flat plate by drilling a hole from the surface", Ocean Eng., 240, 109965. https://doi.org/10.1016/j.oceaneng.2021.109965.
  24. Thomareisa, N. and Papadakis, G. (2017), "Effect of trailing edge shape on the separated flow characteristics around an airfoil at low reynolds number: A numerical study", Phys. Fluids, 29(1), 1-39. https://doi.org/10.1063/1.4973811.
  25. van der Velden, W.C. and Oerlemans, S. (2017), "Numerical analysis of noise reduction mechanisms on improved trailing edge serrations using the Lattice Boltzmann method", In 35th Wind Energy Symposium, https://doi.org/10.2514/6.2017-1379.
  26. Vermeer, L.J., Sorensen, J.N. and Crespo, A. (2003), "Wind turbine wake aerodynamics", Progress Aeros. Sci., 39(6-7), 467-510. https://doi.org/10.1016/S0376-0421(03)00078-2.
  27. Wang, X.L. (2012), "Investigation of the drag characteristics of stratosphere airships for different cusp shapes", J. Aircr., 49, 151-160. https://doi.org/10.2514/1.C031453.
  28. Wang, Z., Ozbay, A., Tian, W. and Hu, H. (2018), "An experimental study on the aerodynamic performances and wake characteristics of an innovative dual-rotor wind turbine", Energy, 147, 94-109. https://doi.org/10.1016/j.energy.2018.01.020.
  29. Xu, H., Shen, W., Zhu, W., Yang, H. and Liu, C. (2014), "Aerodynamic analysis of trailing edge enlarged wind turbine airfoils", J. Phys. Conf. Ser., 524. https://doi.org/10.1088/1742-6596/524/1/01201.
  30. Zhang, Q. and Ligrani, P.M. (2006), "Wake turbulence structure downstream of a cambered airfoil in transonic flow: Effects of surface roughness and freestream turbulence intensity", Int. J. Rotating Machinery, 1-12. https://doi.org/10.1155/IJRM/2006/60234
  31. Zhao, F., Gao, Y., Wang, T., Yuan, J. and Gao, X. (2020), "Experimental study on wake evolution of a 1.5 MW wind turbine in a complex terrain wind farm based on LiDAR measurements", Sustain,. 12. https://doi.org/10.3390/su12062467.
  32. Zhu, H., Hao, W., Li, C. and Ding, Q. (2020), "Effect of flow-deflecting-gap blade on aerodynamic characteristic of vertical axis wind turbines", Renew. Energy, 158(516), 370-387. https://doi.org/10.1016/j.renene.2020.05.092