References
- M. Shen, Y. Deng, L. Zhu, X. Du, and N. Guizani, "Privacy-preserving image retrieval for medical IoT systems: A block-chain-based approach," IEEE Netw., Vol. 33, No. 5, pp. 27-33, 2019. https://doi.org/10.1109/MNET.001.1800503
- D. M. Lazer, A. Pentland, D. J. Watts, S. Aral, S. Athey, N. Contractor, and C. Wagner, "Computational social science: Obstacles and opportunities," Science, Vol. 369, No. 6507, pp. 1060-1062, 2020. https://doi.org/10.1126/science.aaz8170
- Y. L. Pan, J. C. Chen, and J.. L. Wu, "Towards a Controllable and Reversible Privacy Protection System for Facial Images through Enhanced Multi-Factor Modifier Networks," Entropy, Vol. 25, No. 2, pp. 272, 2023.
- M. N. Asghar, N. Kanwal, B. Lee, M. Fleury, M. Herbst, and Y. Qiao, "Visual surveillance within the EU general data protection regulation: A technology perspective," IEEE Access, Vol. 7, pp. 111709-111726, 2019. https://doi.org/10.1109/ACCESS.2019.2934226
- Y. Mekdad, A. Aris, L. Babun, A. El Fergougui, M. Conti, R. Lazzeretti, and A. S. Uluagac, "A survey on security and privacy issues of UAVs," Comput. Netw., Vol. 224, 109626, 2023.
- X. Jiang, F. R. Yu, T. Song, and V. C. Leung, "Resource allocation of video streaming over vehicular networks: A survey, some research issues and challenges," IEEE Trans. Intell. Transp. Syst., Vol. 23, No. 7, pp. 5955-5975, 2021.
- J. M. Blythe and S. D. Johnson, "A systematic review of crime facilitated by the consumer Internet of Things," Secur. J., Vol. 34, pp. 97-125, 2021. https://doi.org/10.1057/s41284-019-00211-8
- B. Liu, M. Ding, S. Shaham, W. Rahayu, F. Farokhi, and Z. Lin, "When machine learning meets privacy: A survey and outlook," ACM Comput. Surv., Vol. 54, No. 2, pp. 1-36, 2021. https://doi.org/10.1145/3436755
- M. H. P. Rizi and S. A. H. Seno, "A systematic review of technologies and solutions to improve security and privacy protection of citizens in the smart city," Internet Things, pp. 100584, 2022.
- D. Ling, Z. Wei, F. Huazhu, R. Wenqi, and Z. Xinpeng, "An efficient privacy protection scheme for data security in video surveillance," J. Vis. Commun. Image Represent., Vol. 59, pp. 347-362, 2019. https://doi.org/10.1016/j.jvcir.2019.01.027
- Z. Guo and L. Kennedy, "Policing based on automatic facial recognition," Artif. Intell. Law, Vol. 31, No. 2, pp. 397-443, 2023. https://doi.org/10.1007/s10506-022-09330-x
- H. Cai, J. Lin, Y. Lin, Z. Liu, H. Tang, H. Wang, and S. Han, "Enable deep learning on mobile devices: Methods, systems, and applications," ACM Trans. Des. Autom. Electron. Syst., Vol. 27, No. 3, pp. 1-50, 2022. https://doi.org/10.1145/3486618
- A. Fitwi, Y. Chen, S. Zhu, E. Blasch, and G. Chen, "Privacy-preserving surveillance as an edge service based on lightweight video protection schemes using face de-identification and window masking," Electronics, Vol. 10, No. 3, pp. 236, 2021.
- F. Schroff, D. Kalenichenko, and J. Philbin, "FaceNet: A unified embedding for face recognition and clustering," in Proc. IEEE Conf. Comput. Vision Pattern Recognit., pp. 815-823, 2015.
- K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, "Joint face detection and alignment using multitask cascaded convolutional networks," IEEE Signal Process. Lett., Vol. 23, No. 10, pp. 1499-1503, 2016. https://doi.org/10.1109/LSP.2016.2603342
- P. Mettes, D. C. Koelma, and C. G. Snoek, "Shuffled ImageNet banks for video event detection and search," ACM Trans. Multimedia Comput. Commun. Appl., Vol. 16, No. 2, pp. 1-21, 2020. https://doi.org/10.1145/3377875
- B. Zhang, B. Rahmatullah, S. L. Wang, A. A. Zaidan, B. B. Zaidan, and P. Liu, "A review of research on medical image confidentiality related technology coherent taxonomy, motivations, open challenges and recommendations," Multimedia Tools Appl., Vol. 82, pp. 21867-21906, 2023. https://doi.org/10.1007/s11042-020-09629-4
- J. Gleick, Chaos: Making a New Science. Soho, NY, USA: Open Road Media, 2011.
- D. M. Jimenez-Bravo, A.. L. Murciego, A. S. Mendes, H. S. San Blas, and J. Bajo, "Multi-object tracking in traffic environments: A systematic literature review," Neurocomputing, 2022.
- H. Kim, H. Kim, and E. Hwang, "Real-time shape tracking of facial landmarks," Multimedia Tools Appl., Vol. 79, pp. 15945-15963, 2020. https://doi.org/10.1007/s11042-018-6814-7
- P. Phillips, "Privacy Operating Characteristicfor Privacy Protection in Surveillance Applications," in Audio- and Video-Based Biometric Person Authentication, T. Kanade, A. Jain, and N. Ratha, Eds. Berlin/Heidelberg, Germany: Springer, 2005, pp. 869-878.
- J. Seo, S. Hwang, and Y.-H. Suh, "A Reversible Face De-Identification Method based on Robust Hashing," in Proc. Int. Conf. Consumer Electron., Algarve, Portugal, 14-16 April 2008.
- R. Gross, L. Sweeney, J. Cohn, F. de la Torre, and S. Baker, "Face De-identification," in Protecting Privacy in Video Surveillance, A. Senior, Ed. Berlin/Heidelberg, Germany: Springer, 2009.
- E. M. Newton, L. Sweeney, and B. Malin, "Preserving privacy by de-identifying face images," IEEE Trans. Knowl. Data Eng., Vol. 17, pp. 232-243, 2005. https://doi.org/10.1109/TKDE.2005.32
- B. Meden, R. C. Malli, S. Fabijan, H. K. Ekenel, V. Struc, and P. Peer, "Face de-identification with generative deep neural networks," IET Signal Process., Vol. 11, pp. 1046-1054, 2017. https://doi.org/10.1049/iet-spr.2017.0049
- Y.-L. Pan, M.-J. Haung, K.-T. Ding, J.-L. Wu, and J.-S. R. Jang, "K-Same-Siamese-GAN: K-Same Algorithm with Generative Adversarial Network for Facial Image De-identification with Hyperparameter Tuning and Mixed Precision Training," in Proc. 2019 16th IEEE Int. Conf. Adv. Video Signal Based Surveill. (AVSS), Taipei, Taiwan, 18-21 September 2019, pp. 1-8.
- Y. Jeong, J. Choi, S. Kim, Y. Ro, T.-H. Oh, D. Kim, H. Ha, and S. Yoon, "FICGAN: Facial Identity Controllable GAN for De-identification," arXiv preprint arXiv:2110.00740, 2021.
- M. Yamac, M. Ahishali, N. Passalis, J. Raitoharju, B. Sankur, and M. Gabbouj, "Reversible Privacy Preservation using Multi-level Encryption and Compressive Sensing," in Proc. 27th Eur. Signal Process. Conf., A Coruna, Spain, 2-6 September 2019.
- X. Gu, W. Luo, M. S. Ryoo, and Y. J. Lee, "Password-conditioned anonymization and deanonymization with face identity transformers," in Computer Vision-ECCV 2020: 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XXIII 16, pp. 727-743, Springer International Publishing, 2020.
- W. Xia, Y. Zhang, Y. Yang, J.-H. Xue, B. Zhou, and M.-H. Yang, "GAN Inversion: A Survey," IEEE Trans. Pattern Anal. Mach. Intell., Vol. 45, No. 3, pp. 3121-3138, March 2023.
- J. Lin, Z. Chen, Y. Xia, S. Liu, T. Qin, and J. Luo, "Exploring Explicit Domain Supervision for Latent Space Disentanglement in Unpaired Image-to-Image Translation," IEEE Trans. Pattern Anal. Mach. Intell., Vol. 43, pp. 1254-1266, 2019.
- Y. Choi, M. Choi, M. Kim, J. W. Ha, S. Kim, and J. Choo, "StarGAN: Unified generative adversarial networks for multi-domain image-to-image translation," in Proc. IEEE Conf. Comput. Vision Pattern Recognit. (CVPR), Salt Lake City, UT, USA, 18-22 June 2018, pp. 8789-8797.
- P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, "Image-to-image translation with conditional adversarial networks," in Proc. IEEE Conf. Comput. Vision Pattern Recognit. (CVPR), Honolulu, HI, USA, 21- 26 July 2017, pp. 1125-1134.
- X. Cao, Y. Wei, F. Wen, and J. Sun, "Face alignment by explicit shape regression," in Proc. IEEE Conf. Comput. Vision Pattern Recognit. (CVPR), Providence, RI, USA, 16-21 June 2012, pp. 2887-2894.