DOI QR코드

DOI QR Code

Plant-derived PAP proteins fused to immunoglobulin A and M Fc domains induce anti-prostate cancer immune response in mice

  • Yang Joo Kang (Department of Medicine, College of Medicine, Chung-Ang University) ;
  • Deuk-Su Kim (Department of Medicine, College of Medicine, Chung-Ang University) ;
  • Seyoung Kim (Department of Life Science, Chung-Ang University) ;
  • Young-Jin Seo (Department of Life Science, Chung-Ang University) ;
  • Kisung Ko (Department of Medicine, College of Medicine, Chung-Ang University)
  • 투고 : 2022.12.25
  • 심사 : 2023.04.07
  • 발행 : 2023.07.31

초록

In this study, recombinant Fc-fused Prostate acid phosphatase (PAP) proteins were produced in transgenic plants. PAP was fused to immunoglobulin (Ig) A and M Fc domain (PAP-IgA Fc and PAP-IgM Fc), which were tagged to the ER retention sequence KDEL to generate PAP-IgA FcK and PAP-IgM FcK. Agrobacterium-mediated transformation was performed to produce transgenic tobacco plants expressing four recombinant proteins. Genomic PCR and RT-PCR analyses confirmed the transgene insertion and mRNA transcription of PAP-IgA Fc, PAP-IgM Fc, PAP-IgA FcK, and PAP-IgM FcK in tobacco plant leaves. Western blot confirmed the expression of PAP-IgA Fc, PAP-IgM Fc, PAP-IgA FcK, and PAP-IgM FcK proteins. SEC-HPLC and Bio-TEM analyses were performed to confirm the size and shape of the plant-derived recombinant PAP-Fc fusion proteins. In mice experiments, the plant-derived IgA and IgM Fc fused proteins induced production of total IgGs including IgG1 against PAP. This result suggests that IgA and IgM Fc fusion can be applied to produce recombinant PAP proteins as a prostate cancer vaccine in plant expression system.

키워드

과제정보

This research was funded by the National Research Foundation of Korea grant (2021R1F1A1063869) and Basic Science Research Program through the National Research Foundation of Korea grant (2020R1I1A1A01072021).

참고문헌

  1. Barve A, Jin W and Cheng K (2014) Prostate cancer relevant antigens and enzymes for targeted drug delivery. J Control Release 187, 118-132 https://doi.org/10.1016/j.jconrel.2014.05.035
  2. Quintero IB, Araujo CL, Pulkka AE et al (2007) Prostatic acid phosphatase is not a prostate specific target. Cancer Res 67, 6549-6554 https://doi.org/10.1158/0008-5472.CAN-07-1651
  3. Kweon SS (2018) Updates on cancer epidemiology in Korea, 2018. Chonnam Med J 54, 90-100 https://doi.org/10.4068/cmj.2018.54.2.90
  4. Zhang H and Chen J (2018) Current status and future directions of cancer immunotherapy. J Cancer 9, 1773-1781 https://doi.org/10.7150/jca.24577
  5. Sharma P, Hu-Lieskovan S, Wargo JA and Ribas A (2017) Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168, 707-723 https://doi.org/10.1016/j.cell.2017.01.017
  6. Rius M and Lyko F (2012) Epigenetic cancer therapy: rationales, targets and drugs. Oncogene 31, 4257-4265 https://doi.org/10.1038/onc.2011.601
  7. Petrylak DP, Tangen CM, Hussain MH et al (2004) Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med 351, 1513-1520 https://doi.org/10.1056/NEJMoa041318
  8. Yang C, Gao X and Gong R (2018) Engineering of fc fragments with optimized physicochemical properties implying improvement of clinical potentials for fc-based therapeutics. Front Immunol 8, 1860
  9. Czajkowsky DM, Hu J, Shao Z and Pleass RJ (2012) Fc-fusion proteins: new developments and future perspectives. EMBO Mol Med 4, 1015-1028 https://doi.org/10.1002/emmm.201201379
  10. Korhonen R and Moilanen E (2009) Abatacept, a novel CD80/86-CD28 T cell co-stimulation modulator, in the treatment of rheumatoid arthritis. Basic Clin Pharmacol Toxicol 104, 276-284 https://doi.org/10.1111/j.1742-7843.2009.00375.x
  11. Cines DB, Yasothan U and Kirkpatrick P (2008) Romiplostim. Nat Rev Drug Discov 7, 887-888 https://doi.org/10.1038/nrd2741
  12. Strober BE and Menon K (2007) Alefacept for the treatment of psoriasis and other dermatologic diseases. Dermatol Ther 20, 270-276 https://doi.org/10.1111/j.1529-8019.2007.00140.x
  13. Ammann JU, Jahnke M, Dyson MR, Kaufman J and Trowsdale J (2012) Detection of weak receptor-ligand interactions using IgM and J-chain-based fusion proteins. Eur J Immunol 42, 1354-1356 https://doi.org/10.1002/eji.201142151
  14. Nagashima H, Kaneko K, Yamanoi A et al (2011) TNF receptor II fusion protein with tandemly repeated Fc domains. J Biochem 149, 337-346 https://doi.org/10.1093/jb/mvq149
  15. Mekhaiel DNA, Czajkowsky DM, Andersen JT et al (2011) Polymeric human Fc-fusion proteins with modified effector functions. Sci Rep 1, 124-124 https://doi.org/10.1038/srep00124
  16. Heller JE (1987) Prostatic acid phosphatase: its current clinical status. J Urol 137, 1091-1103 https://doi.org/10.1016/S0022-5347(17)44414-4
  17. Guenzi S, Fra AM, Sparvoli A, Bet P, Rocco M and Sitia R (1994) The efficiency of cysteine-mediated intracellular retention determines the differential fate of secretory IgA and IgM in B and plasma cells. Eur J Immunol 24, 2477-2482 https://doi.org/10.1002/eji.1830241033
  18. Davis AC, Roux KH and Shulman MJ (1988) On the structure of polymeric IgM. Eur J Immunol 18, 1001-1008 https://doi.org/10.1002/eji.1830180705
  19. Lim CY, Kim DS, Kang Y et al (2022) Immune responses to plant-derived recombinant colorectal cancer glycoprotein EpCAM-FcK fusion protein in mice. Biomol Ther 30, 546-552 https://doi.org/10.4062/biomolther.2022.103
  20. Song I, Kang YJ, Kim DH, Kim MK and Ko K (2020) Expression and in vitro function of anti-cancer mAbs in transgenic Arabidopsis thaliana. BMB Rep 53, 229-233 https://doi.org/10.5483/BMBRep.2020.53.4.106
  21. Kim DS, Kang YJ, Lee KJ et al (2020) A plant-derived antigen-antibody complex induces anti-cancer immune responses by forming a large quaternary structure. Int J Mol Sci 21, 1-18 https://doi.org/10.3390/ijms21165603
  22. Song I, Kang Y, Lee YK, Myung SC and Ko K (2018) Endoplasmic reticulum retention motif fused to recombinant anti-cancer monoclonal antibody (mAb) CO17-1A affects mAb expression and plant stress response. PloS One 13, e0198978
  23. Fischer R, Vaquero-Martin C, Sack M, Drossard J, Emans N and Commandeur U (1999) Towards molecular farming in the future: transient protein expression in plants. Biotechnol Appl Biochem 30 ( Pt 2), 113-116 https://doi.org/10.1111/j.1470-8744.1999.tb00900.x
  24. Fischer R, Drossard J, Commandeur U, Schillberg S and Emans N (1999) Towards molecular farming in the future: moving from diagnostic protein and antibody production in microbes to plants. Biotechnol Appl Biochem 30 (Pt 2), 101-108 https://doi.org/10.1111/j.1470-8744.1999.tb00898.x
  25. Shanmugaraj BM and Ramalingam S (2014) Plant expression platform for the production of recombinant pharmaceutical proteins. Austin J Biotechnol Bioeng 1, 4
  26. Horn M, Woodard S and Howard J (2004) Plant molecular farming: systems and products. Plant Cell Rep 22, 711-720 https://doi.org/10.1007/s00299-004-0767-1
  27. Twyman RM, Stoger E, Schillberg S, Christou P and Fischer R (2003) Molecular farming in plants: host systems and expression technology. Trends Biotechnol 21, 570-578 https://doi.org/10.1016/j.tibtech.2003.10.002
  28. Lim CY, Lee KJ, Oh DB and Ko K (2015) Effect of the developmental stage and tissue position on the expression and glycosylation of recombinant glycoprotein GA733-FcK in transgenic plants. Front Plant Sci 5, 778
  29. Lu Z, Lee KJ, Shao Y et al (2012) Expression of GA733-Fc fusion protein as a vaccine candidate for colorectal cancer in transgenic plants. Biomed Res Int 2012, 364240
  30. Schouten A, Roosien J, van Engelen FA et al (1996) The C-terminal KDEL sequence increases the expression level of a single-chain antibody designed to be targeted to both the cytosol and the secretory pathway in transgenic tobacco. Plant Mol Biol 30, 781-793 https://doi.org/10.1007/BF00019011
  31. Wandelt CI, Khan MRI, Craig S, Schroeder HE, Spencer D and Higgins TJV (1992) Vicilin with carboxy-terminal KDEL is retained in the endoplasmic reticulum and accumulates to high levels in the leaves of transgenic plants. Plant J 2, 181-192 https://doi.org/10.1046/j.1365-313X.1992.t01-41-00999.x
  32. Schroeder HW Jr and Cavacini L (2010) Structure and function of immunoglobulins. J Allergy Clin Immunol 125, S41-S52 https://doi.org/10.1016/j.jaci.2009.09.046
  33. Sorensen V, Sundvold V, Michaelsen TE and Sandlie I (1999) Polymerization of IgA and IgM: roles of Cys309/Cys414 and the secretory tailpiece. J Immunol 162, 3448-3455 https://doi.org/10.4049/jimmunol.162.6.3448
  34. Normansell DE (1987) Human immunoglobulin subclasses. Diagn Clin Immunol 5, 115-128
  35. Kartikasari AER, Prakash MD, Cox M et al (2019) Therapeutic cancer vaccines-T cell responses and epigenetic modulation. Front Immunol 9, 3109
  36. Westdorp H, Skold AE, Snijer BA et al (2014) Immunotherapy for prostate cancer: lessons from responses to tumor-associated antigens. Front Immunol 5, 191
  37. Melssen M and Slingluff CL (2017) Vaccines targeting helper T cells for cancer immunotherapy. Curr Opin Immunol 47, 85-92 https://doi.org/10.1016/j.coi.2017.07.004
  38. GR, van Dolleweerd C, Guerra T et al (2018) A polymeric immunoglobulin-antigen fusion protein strategy for enhancing vaccine immunogenicity. Plant Biotechnol J 16, 1983-1996 https://doi.org/10.1111/pbi.12932
  39. Shanmugaraj B, I Bulaon CJ and Phoolcharoen W (2020) Plant molecular farming: a viable platform for recombinant biopharmaceutical production. Plants 9, 842