DOI QR코드

DOI QR Code

태양광 발전시설이 설치된 사면의 강우시 침투를 고려한 안정성 및 거동 분석

Analysis of Stability and Behavior of Slope with Solar Power Facilities Considering Seepage of Rainfall

  • 유정연 (인하대학교 토목공학과) ;
  • 이동건 (인하대학교 토목공학과) ;
  • 송기일 (인하대학교 사회인프라공학과)
  • 투고 : 2023.06.30
  • 심사 : 2023.07.12
  • 발행 : 2023.07.31

초록

우리나라에 분포하는 산지 태양광 발전시설에 의해 강우시 사면파괴가 발생하고 있다. 이때 불투수면인 태양광 패널을 따라 흐르는 강우로 인해 침투 작용이 일반적인 사면과 달라 간극수압 분포가 차이를 보이며 태양광 구조물의 하중에 의해 지반 거동에 차이가 있다. 따라서 본 연구에서는 강우시의 태양광 발전시설이 설치된 사면의 안정성 평가 방법을 개발하고, 최대 사면 변위 지점을 통해 취약지점을 분석하였다. 강우의 침투에 따른 안정성을 평가하고 거동을 예측하기 위해 침투해석과 유한차분법 수치해석을 연계하였다. 대상 현장에 대해서는 함수특성곡선 변수, Mohr-Coulomb 파괴 기준을 만족하는 강도 정수 및 지반 물성치, 사면의 각도와 기반암의 깊이 등의 지형적 인자를 가정하였으며 이들 중 안전율에 가장 큰 영향을 미치는 인자에 대해 검토하였다. 태양광 발전시설의 유무에 따라 침투 양상 및 안전율에 차이가 있으며 강우 침투에 따라 안전율이 감소하는 경향을 보이는 것으로 나타났다. 또한 최대 변위 지점은 사면의 상단부와 하단부 인접 지점에 집중적으로 분포하였다.

Slope failures during rainfall have been observed in mountainous areas of South Korea as a result of the presence of solar power facilities. The seepage behavior and pore pressure distribution differ from typical slopes due to the presence of impermeable solar panels, and the load imposed by the solar power structures also affects the slope behavior. This study aims to develop a method for evaluating the stability of slopes with solar power facilities and to analyze vulnerable points by considering the maximum slope displacement. To assess the slope stability and predict behavior while considering rainfall seepage, a combined seepage analysis and finite difference method numerical analysis were employed. For the selected site, various variables were assumed, including parameters related to the Soil Water Characteristic Curve, strength parameters that satisfy the Mohr-Coulomb failure criterion, soil properties, and topographic factors such as slope angle and bedrock depth. The factors with the most significant influence on the factor of safety (FOS) were identified. The presence of solar power facilities was found to affect the seepage distribution and FOS, resulting in a decreasing trend due to rainfall seepage. The maximum displacement points were concentrated near the upper (crest) and lower (toe) sections of the slope.

키워드

과제정보

본 논문은 행정안전부 "산지(경사지) 태양광 발전시설의 전주기 스마트 안전관리 기술 개발(20018265)"의 지원을 받아 작성되었음

참고문헌

  1. Carter, M. and Bentley, S. (1991), "Correlations of soil properties", Penetech Press Publishers, London.
  2. Cho, M.J., Gwak, Y.S., and Kim S.H. (2017), "The Estimation of Soil Moisture Characteristic Curve and Model Parameters in a Steep Hillslope", J. of Korean Society of Hazard Mitigation, Vol.17, No.6, pp.175-184. https://doi.org/10.9798/KOSHAM.2017.17.6.175
  3. Cho, S.E. (2018), "Probabilistic Stability Analysis of Unsaturated Soil Slope under Rainfall Infiltration", J. of Korean Geotechnical Society, Vol.34, No.5, pp.37-51.
  4. Domenico, P.A. and Schwartz, F.W. (1990), "Physical and Chemical Hydrogeology", John Willey & Sons, New York, USA.
  5. Fredlund, D. G., Rahardjo, H., and Gan, J. K. M. (1987), "Nonlinearity of Strength Envelope for Unsaturated Soils", Proceedings of 6th International Conference on Expansive Soils, New Delhi, pp.49-54.
  6. Fredlund, D.G. and Xing, A. (1994), "Equations for the Soil-Water Characteristic Curve", Canadian geotechnical Journal, Vol.31, No.3, pp.521-532. https://doi.org/10.1139/t94-061
  7. Fredlund, D. G. (1981), "SLOPE-II Computer Program, User's Manual S-10", Geo-Slope Programming Ltd, Calgary, Canada.
  8. Fredlund, D.G. and Rahardjo, h. (1993), "Soil Mechanics for Unsaturated Soils", John Wiley & Sons Inc, New York, USA.
  9. Li, N., Zhang, Y., and Huang, L. (2021), "Real-Time Slope Monitoring System and Risk Communication among Various Parties: Case Study for a Large-Scale Slope in Shenzhen, China", ASCE, Vol.7, Issue 4.
  10. Ministry of Trade, Industry and Energy (2022), "Renewable Energy Policy Improvement Plan according to Changes in the Energy Environment", Press release, 2022.11.3.
  11. Minnesota Department of Transportation (2007), "Pavement Design", Minnesota, USA.
  12. National Disaster Management Research Institute (2020), "Development of National-scale Risk Evaluation System for Steep-Slope Disaster", Ulsan, Korea, pp.33-43.
  13. Ng, C. W. W. and Shi, Q. (1998), "A Numerical Investigation of the Stability of Unsaturated Soil Slopes Subjected to Transient Seepage", Computers and Geotechnics, Vol.22, Issue 1, pp.1-28. https://doi.org/10.1016/S0266-352X(97)00036-0
  14. Obrzud, R. and Truty, A. (2012), "THE HARDENING SOIL MODEL - A PRACTICAL GUIDEBOOK Z Soil.PC 100701 report", Zace Services, Switzerland.
  15. Park, B.S., Jun, S.H., Cho, K.J., and Yoo, N.J. (2010), "Sensitivity Analyses of Influencing Factors on Slope Stability", J. of Korean Society of Hazard Mitigation, Vol.10, No.3, pp.91-100.
  16. Park, C.S. and Ahn, S.J. (2019), "An Analytical Study on the Slope Safety Factor Considering Various Conditions", J. of Korean Geotechnical Society, Vol.25, No.5, 2019. pp.31-41.
  17. Pei, H.F., Zhang, S.Q., Borana, L., Zhao, Y., and Yin J.H. (2019), "Slope Stability Analysis based on Real-Time Displacement Measurements", Measurement, Vol.131, pp.686-693. https://doi.org/10.1016/j.measurement.2018.09.019
  18. Rouxel, M., Ruiz, L., Molenat, Hamon, Y., Chirie, and Michot, D. (2011), "Experimental Determination of Hydrodynamic Properties of Weathered Granite", Vadose Zone Journal, Vol.11, Issue 3, pp.10.
  19. Seo, Y.S., Yun, H.S., Kim, D.G., and Kwon, O.I (2016), "Analysis on Physical and Mechanical Properties of Rock Mass in Korea", J. of Engineering Geology, Vol.26, No.4, pp.593-600. https://doi.org/10.9720/kseg.2016.4.593
  20. Association of Swiss Road and Traffic Engineers, Swiss Standard SN 670 010b: Characteristic Coefficients of soils.
  21. Van Genuchten, M. Th. (1980), "A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils", Soil Science Society of America Journal, Vol.44, No.5, pp.892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x
  22. Yu, J.Y., Woo, J.W., Kang, K.N., and Song, K.I. (2023), "Correlations between Variables Related to Slope During Rainfall and Factor of Safety and Displacement by Coupling Analysis", Geomechanics and Engineering, Vol.33, No.1, pp.77-89. https://doi.org/10.12989/GAE.2023.33.1.077