Acknowledgement
The authors thank the Deanship of Scientific Research and RSSU at King Saud University for their technical support.
References
- Aloud, M. 2016. Investment opportunities forecasting: A genetic programming-based dynamic portfolio trading system under directional-change framework. J. Comp. Fin 22(1): 1-35, doi: 10.21314/JCF.2018.346.
- Aloud, M. 2017. Adaptive GP agent-based trading system under intraday seasonality model. Intell. Decis. Technol. Int. J 11(2): 235-251, doi: 10.3233/IDT-170291.
- Alvarez-Ramirez, J.; Rodriguez, E.; and Ibarra-Valdez, C. 2018. Long-range correlations and asymmetry in the bitcoin market, Phys. A 492: 948-955, doi: 10.1016/j.physa.2017.11.025.
- Balcilar, M.; Bouri, E.; Gupta, R.; and Roubaud, D. 2017. Can volume predict Bitcoin returns and volatility? A quantiles-based approach. Econ. Modell. 64: 74-81, doi: 10.1016/j.econmod.2017.03.019.
- Bariviera, A. 2017. The inefficiency of bitcoin revisited: A dynamic approach. Econ. Lett. 161: 1-4, doi: 10.1016/j.econlet.2017.09.013.
- Bariviera, A.; Basgall, M.; Hasperue, W.; and Naiouf, M. 2017. Some stylized facts of the bitcoin market. Phys. A 484 (2017): 82-90, doi: 10.1016/j.physa.2017.04.159.
- Berutich, J.; Lopez, F.; Luna, F.; and Quintana, D. 2016. Robust technical trading strategies using GP for algorithmic portfolio selection. Expert Syst. Appl. 46: 307-315, doi: 10.1016/j.eswa.2015.10.040.
- Bouri, E.; Gupta, R.; Tiwari, A.K.; and Roubaud, D. 2017. Does Bitcoin hedge global uncertainty? Evidence from wavelet-based quantile-in-quantile regressions. Fin. Res. Lett. 23: 87-95 doi: 10.1016/j.frl.2017.02.009.
- Bouri, E.; Shahzad, S.J.H.; and Roubaud, D. 2019. Co-explosivity in the cryptocurrency market. Fin. Res. Lett. 29: 178-183, doi: 10.1016/j.frl.2018.07.005.
- Briere, M.; Oosterlinck, K.; and Szafarz, A. 2015. Virtual currency, tangible return: Portfolio diversification with bitcoin. J. Asset Manag. 16(6): 365-373, doi: 10.2139/ssrn.2324780.
- Brock, W.; Lakonishok, J.; and LeBaron, B. 1992. Simple technical trading rules and the stochastic properties of stock returns. J. Fin. 47(5): 1731-1764, doi: 10.2307/2328994.
- Chuen Lee, D.; Guo, L.; and Wang, Y. (2017). Cryptocurrency: A new investment opportunity? J. Altern. Invest. 20(3): 16-40, doi: 10.3905/jai.2018.20.3.016.
- Dastgir, S.; Demir, E.; Downing, G.; Gozgor, G.; and Lau, C.K.M. 2019. The causal relationship between Bitcoin attention and Bitcoin returns: Evidence from the copulabased Granger causality test. Fin. Res. Lett. 28: 160-164, doi: 10.1016/j.frl.2018.04.019.
- Dyhrberg, A.H. 2016. Bitcoin, gold and the dollar-A GARCH volatility analysis. Finance. Res. Lett. 16: 85-92, doi: 10.1016/j.frl.2015.10.008.
- Holland, J.H. 1975. Adaptation in natural and artificial systems. Ann Arbor, MI: University of Michigan Press.
- KiHoon Hong 2017. Bitcoin as an alternative investment vehicle. Inf. Technol. Manag. 18(4): 265-275, doi: 10.1007/s10799-016-0264-6.
- Iba, H. and Aranha, C.C. 2012. Introduction to Genetic Algorithms. In Practical Applications of Evolutionary Computation to Financial Engineering. Adaptation, Learning, and Optimization, vol. 11. Berlin, Heidelberg: Springer.
- Kampouridis, M. and Tsang, E. 2012. Investment opportunities forecasting: Extending the grammar of a GP-based tool. Int. J. Comp. Intell. Syst. 5(3): 530-541, doi: 10.1080/18756891.2012.696918.
- Kim, Y.B.; Kim, J.G.; Kim, W.; Im, J.H.; Kim, T.H.; and Kang, S.J. 2016. Predicting fluctuations in cryptocurrency transactions based on user comments and replies. PLOS ONE 11(8): e0161197, doi: 10.1371/journal.pone.0161197.
- Koza, J.R. 1992. Genetic programming: On the programming of computers by means of natural selection. Cambridge, MA: MIT Press.
- Li, J. 2001. FGP: A Genetic Programming-based Financial Forecasting Tool. PhD thesis, Department of Computer Science, University of Essex.
- Lohpetch, D. and Corne, D. 2009. Discovering effective technical trading rules with genetic programming: towards robustly outperforming buy-and-hold, 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC) (2009), pp. 439-444
- Mousavi, S.; Esfahanipour, A.; and Zarandi, M. 2014. A novel approach to dynamic portfolio trading system using multitree genetic programming. Knowl. Based Syst. 66: 68-81, doi: 10.1016/j.knosys.2014.04.018.
- Nakamoto, S. 2008. Bitcoin: A peer-to-peer electronic cash system. Cryptography Mailing list at https://metzdowd.com.
- Poli, R.; Langdon, W.B.; and McPhee, N.F. 2008. A Field Guide to Genetic Programming.
- Schwert, G. 2003. Anomalies and market efficiency. Handb. Econ. Fin. 1: 939-974, doi: 10.2139/ssrn.338080.
- Tiwari, A.K.; Jana, R.K.; Das, D.; and Roubaud, D. 2018. Informational efficiency of Bitcoin-an extension. Econ. Lett. 163: 106-109 doi: 10.1016/j.econlet.2017.12.006.
- Wong, W.; Manzur, M.; and Chew, B. 2003. How rewarding is technical analysis? Evidence from Singapore stock market. Appl. Financ. Econ. 13(7): 543-551, doi: 10.1080/0960310022000020906.
- Yan, W. and Clack, C.D. 2010. Evolving robust GP solutions for hedge fund stock selection in emerging markets. Soft Comput. 15(1): 37-50, doi: 10.1145/1276958.1277384.