DOI QR코드

DOI QR Code

Bitcoin Algorithm Trading using Genetic Programming

  • Monira Essa Aloud (Department of Management Information system, College of Business Administration, King Saud University)
  • Received : 2023.07.05
  • Published : 2023.07.30

Abstract

The author presents a simple data-driven intraday technical indicator trading approach based on Genetic Programming (GP) for return forecasting in the Bitcoin market. We use five trend-following technical indicators as input to GP for developing trading rules. Using data on daily Bitcoin historical prices from January 2017 to February 2020, our principal results show that the combination of technical analysis indicators and Artificial Intelligence (AI) techniques, primarily GP, is a potential forecasting tool for Bitcoin prices, even outperforming the buy-and-hold strategy. Sensitivity analysis is employed to adjust the number and values of variables, activation functions, and fitness functions of the GP-based system to verify our approach's robustness.

Keywords

Acknowledgement

The authors thank the Deanship of Scientific Research and RSSU at King Saud University for their technical support.

References

  1. Aloud, M. 2016. Investment opportunities forecasting: A genetic programming-based dynamic portfolio trading system under directional-change framework. J. Comp. Fin 22(1): 1-35, doi: 10.21314/JCF.2018.346. 
  2. Aloud, M. 2017. Adaptive GP agent-based trading system under intraday seasonality model. Intell. Decis. Technol. Int. J 11(2): 235-251, doi: 10.3233/IDT-170291. 
  3. Alvarez-Ramirez, J.; Rodriguez, E.; and Ibarra-Valdez, C. 2018. Long-range correlations and asymmetry in the bitcoin market, Phys. A 492: 948-955, doi: 10.1016/j.physa.2017.11.025. 
  4. Balcilar, M.; Bouri, E.; Gupta, R.; and Roubaud, D. 2017. Can volume predict Bitcoin returns and volatility? A quantiles-based approach. Econ. Modell. 64: 74-81, doi: 10.1016/j.econmod.2017.03.019. 
  5. Bariviera, A. 2017. The inefficiency of bitcoin revisited: A dynamic approach. Econ. Lett. 161: 1-4, doi: 10.1016/j.econlet.2017.09.013. 
  6. Bariviera, A.; Basgall, M.; Hasperue, W.; and Naiouf, M. 2017. Some stylized facts of the bitcoin market. Phys. A 484 (2017): 82-90, doi: 10.1016/j.physa.2017.04.159. 
  7. Berutich, J.; Lopez, F.; Luna, F.; and Quintana, D. 2016. Robust technical trading strategies using GP for algorithmic portfolio selection. Expert Syst. Appl. 46: 307-315, doi: 10.1016/j.eswa.2015.10.040. 
  8. Bouri, E.; Gupta, R.; Tiwari, A.K.; and Roubaud, D. 2017. Does Bitcoin hedge global uncertainty? Evidence from wavelet-based quantile-in-quantile regressions. Fin. Res. Lett. 23: 87-95 doi: 10.1016/j.frl.2017.02.009. 
  9. Bouri, E.; Shahzad, S.J.H.; and Roubaud, D. 2019. Co-explosivity in the cryptocurrency market. Fin. Res. Lett. 29: 178-183, doi: 10.1016/j.frl.2018.07.005. 
  10. Briere, M.; Oosterlinck, K.; and Szafarz, A. 2015. Virtual currency, tangible return: Portfolio diversification with bitcoin. J. Asset Manag. 16(6): 365-373, doi: 10.2139/ssrn.2324780. 
  11. Brock, W.; Lakonishok, J.; and LeBaron, B. 1992. Simple technical trading rules and the stochastic properties of stock returns. J. Fin. 47(5): 1731-1764, doi: 10.2307/2328994. 
  12. Chuen Lee, D.; Guo, L.; and Wang, Y. (2017). Cryptocurrency: A new investment opportunity? J. Altern. Invest. 20(3): 16-40, doi: 10.3905/jai.2018.20.3.016. 
  13. Dastgir, S.; Demir, E.; Downing, G.; Gozgor, G.; and Lau, C.K.M. 2019. The causal relationship between Bitcoin attention and Bitcoin returns: Evidence from the copulabased Granger causality test. Fin. Res. Lett. 28: 160-164, doi: 10.1016/j.frl.2018.04.019.
  14. Dyhrberg, A.H. 2016. Bitcoin, gold and the dollar-A GARCH volatility analysis. Finance. Res. Lett. 16: 85-92, doi: 10.1016/j.frl.2015.10.008. 
  15. Holland, J.H. 1975. Adaptation in natural and artificial systems. Ann Arbor, MI: University of Michigan Press. 
  16. KiHoon Hong 2017. Bitcoin as an alternative investment vehicle. Inf. Technol. Manag. 18(4): 265-275, doi: 10.1007/s10799-016-0264-6. 
  17. Iba, H. and Aranha, C.C. 2012. Introduction to Genetic Algorithms. In Practical Applications of Evolutionary Computation to Financial Engineering. Adaptation, Learning, and Optimization, vol. 11. Berlin, Heidelberg: Springer. 
  18. Kampouridis, M. and Tsang, E. 2012. Investment opportunities forecasting: Extending the grammar of a GP-based tool. Int. J. Comp. Intell. Syst. 5(3): 530-541, doi: 10.1080/18756891.2012.696918. 
  19. Kim, Y.B.; Kim, J.G.; Kim, W.; Im, J.H.; Kim, T.H.; and Kang, S.J. 2016. Predicting fluctuations in cryptocurrency transactions based on user comments and replies. PLOS ONE 11(8): e0161197, doi: 10.1371/journal.pone.0161197. 
  20. Koza, J.R. 1992. Genetic programming: On the programming of computers by means of natural selection. Cambridge, MA: MIT Press. 
  21. Li, J. 2001. FGP: A Genetic Programming-based Financial Forecasting Tool. PhD thesis, Department of Computer Science, University of Essex. 
  22. Lohpetch, D. and Corne, D. 2009. Discovering effective technical trading rules with genetic programming: towards robustly outperforming buy-and-hold, 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC) (2009), pp. 439-444 
  23. Mousavi, S.; Esfahanipour, A.; and Zarandi, M. 2014. A novel approach to dynamic portfolio trading system using multitree genetic programming. Knowl. Based Syst. 66: 68-81, doi: 10.1016/j.knosys.2014.04.018. 
  24. Nakamoto, S. 2008. Bitcoin: A peer-to-peer electronic cash system. Cryptography Mailing list at https://metzdowd.com. 
  25. Poli, R.; Langdon, W.B.; and McPhee, N.F. 2008. A Field Guide to Genetic Programming. 
  26. Schwert, G. 2003. Anomalies and market efficiency. Handb. Econ. Fin. 1: 939-974, doi: 10.2139/ssrn.338080. 
  27. Tiwari, A.K.; Jana, R.K.; Das, D.; and Roubaud, D. 2018. Informational efficiency of Bitcoin-an extension. Econ. Lett. 163: 106-109 doi: 10.1016/j.econlet.2017.12.006. 
  28. Wong, W.; Manzur, M.; and Chew, B. 2003. How rewarding is technical analysis? Evidence from Singapore stock market. Appl. Financ. Econ. 13(7): 543-551, doi: 10.1080/0960310022000020906. 
  29. Yan, W. and Clack, C.D. 2010. Evolving robust GP solutions for hedge fund stock selection in emerging markets. Soft Comput. 15(1): 37-50, doi: 10.1145/1276958.1277384.