
IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.7, July 2023

91

Manuscript received July 5, 2023
Manuscript revised July 20, 2023
https://doi.org/10.22937/IJCSNS.2023.23.7.11

Design Patterns for Building Context-Aware Transactional Services in
PaaS-Enabled Systems

Ettazi Widad 1 , Riane Driss 2 and Nassar Mahmoud 3
1 widad.ettazi@um5s.net.ma 2 riane.driss@gmail.com 3 nassar@ensias.ma

IMS Team, ADMIR Laboratory, ENSIAS, Mohammed V University, Rabat, Morocco

Summary
Pervasive computing is characterized by a key characteristic that
affects the operating environment of services and users. It places
more emphasis on dynamic environments where available
resources continuously vary without prior knowledge of their
availability, while in static environments the services provided to
users are determined in advance. At the same time, Cloud
computing paradigm introduced flexibility of use according to
the user’s profile and needs. In this paper, we aimed to provide
Context-Aware Transactional Service applications with solutions
so that it can be integrated and invoked like any service in the
digital ecosystem. Being able to compose is not enough, each
service and application must be able to offer a well-defined
behavior. This behavior must be controlled to meet the
dynamicity and adaptability necessary for the new user’s
requirements. The motivation in this paper is to offer design
patterns that will provide a maximum of automatism in order to
guarantee short reaction times and minimal human intervention.
Our proposal includes a cloud service model by developing a
PaaS service that allows CATS adaptation. A new specification
for the validation of CATS model has been also introduced using
the ACTA formalism.
Keywords:
Context-awareness, Pervasive Computing, PaaS, Transactional
Service, ACTA, Cloud Service Model.

1. Introduction

With the proliferation of pervasive computing and the
availability of a wide range of services, access to
information to transact online is anywhere, anytime. In
such a flexible, dynamic but less reliable environment,
transactional techniques and mechanisms are expected to
provide reliability of service and consistency of data.
Indeed, in so-called pervasive environments where
communicating objects automatically recognize each other
without any particular action by the user, the major
challenge is to capture and model the intention of use and
to resolve its ambiguities. On the one hand, the constraints
of the execution environment affect the execution of
transactional services resulting in cancellations and
unforeseen execution costs. On the other hand, the
approaches proposed for service adaptation to the context
are essentially based on the creation of personalized
services by the specific development the context-
awareness code.

Our approach aims to exploit the advantages of
different existing approaches. Hence, we focused on the
need to design a self-adapting transactional service. We
intend to propose solutions to the flexibility problems of
transactional systems in order to guarantee adaptation to
the varied and variable requirements of applications in
terms of transactional properties and to the constraining
and variable characteristics of pervasive environments.

To illustrate these challenges, we present the
following scenario: “A tourist intends to use an online
travel arrangement service to plan a sightseeing visit. An
application of such an example can be illustrated by a
travel planning scenario. This involves purchasing a flight
ticket with a preference on specific conditions (e.g.,
company, flight schedule, price), booking a hotel room
(e.g., proximity to shopping centers, price) and a table in a
restaurant (e.g., close to the hotel, culinary specialty). This
application can be structured into transactional services,
one of which is associated with flight reservation, the
second with hotel room reservation, and the third with a
restaurant table reservation. Each of the services can use
alternatives; for example, the choice between several
companies and prices. Flight and hotel room are vital
reservations for the user. The commit of the hotel room
reservation service can be done before the conclusion of
other reservations. Due to compensation, it will be
possible to cancel the reservation if at the end the overall
composition is not committed. The user can be also
granted with the option to change the vitality of services
by reserving a hotel room in advance and purchasing a
flight ticket regardless of the completion of the restaurant
table reservation”. To meet these needs, we based our
approach on the as-a-service paradigm [1-3]. Cloud
computing has offered a new ecosystem where everything
is offered as a service, accessible and connectable
anywhere and anytime. Software architects are now
gradually migrating to service-centric architectures.
Applications are now constructed as compositions of
micro-services [4-6] integrating more and more features.

In this paper, we proposed a Cloud service model that
allows the adaptation of CATS services. This model is
built on a PaaS service which introduced (i) design
patterns for the construction of a reliable context-aware

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.7, July 2023

92

transactional service self-adaptive system (ii) a formal
specification of CATS services based on axiomatic
definition in ACTA formalism.

This article is organized as follows. The section II
will be devoted to review some basic concepts. Section III
gives an overview of related works. In section IV, we
present the formal specification of CATS model. Section
V details the proposed Cloud service model and exhibits
design patterns for CATS execution and adaptation. The
section VI presents experimental scenarios demonstrating
our proposition. Finally, we conclude in the section VII.

2. Basic Concepts

2.1 Context-Awareness

According to [7], “a system is context-aware if it uses
context to provide information and services relevant to the
user, where relevance depends on the task requested by the
user”. Other works like [8] have found that definitions of
context-aware systems do not encompass the description
of the context management process. Thus, the authors state
that “the context-awareness of a software system is its
ability to acquire, manage, interpret and respond to context
changes in order to provide the appropriate services”. For
[9], “a system is context-aware if it can automatically
change its services or trigger a service as a response to the
change in the value of information or a set of information
that characterize the service”.

 2.2 Cloud Computing

The proliferation of so-called context-aware mobile
applications has enabled the emergence of a rapidly
evolving field known as mobile cloud computing [10]. The
use of the cloud computing paradigm by current mobile
applications has made it possible to harness its computing
power, memory and storage resources to overcome the
resource limitations of mobile devices [11]. The scalability,
flexibility, and stability offered by cloud services make it
an ideal architecture for use in client applications in a
resource-constrained mobile environment.
Commercialized cloud applications use Platform as a
Service (PaaS), Infrastructure as a Service (IaaS) and
Software as a Service (SaaS) models where software and
resources are hosted in the cloud instead of the customer
[12].

2.2 Platform-as-a-Service

Along with PaaS is a development platform that
supports the lifecycle management of the software. The
capacity provided to the consumer is to deploy on the
Cloud infrastructure applications created or acquired for a

client using programming languages, libraries, services
and tools supported by the vendor. The idea behind PaaS is
to provide the developer with a platform that contains all
the systems and environments necessary for the
development, testing, deployment and hosting of complex
applications delivered as a service [13]. Hence, the
difference between SaaS and PaaS is that SaaS includes
completed applications while PaaS offers a platform where
hosted applications under development [14]. The
advantages of such service are that the developer can take
advantage of the underlying infrastructure to develop large
applications and accelerate their execution. Reference [13]
explained that PaaS can significantly reduce development
time and offers also hundreds of easily accessible services.

3. Related Work

Several research works have studied service
adaptation in the Cloud. Authors in [15] have developed a
framework to support context-aware services in the Cloud.
The framework enables context acquisition and adaptation,
reconfiguration of candidate services, and execution of
reconfigured services. Another concept is proposed in [16]
based on virtual services for service composition in the
Cloud. Virtualization is used for a successful execution of
the composition. Authors in [17] proposed a flexible
service model for seamless service integration in order to
reduce the costs of providing services in cloud-based
environments and provide maximum satisfaction of
services suppliers and consumers. Another study presented
an abstract model for the federation of services according
to their semantics and their QoS parameters [18]. Despite
the multitude of researches in the field of context-aware
services in the cloud, existing cloud platforms do not
provide the necessary services to support the adaptation of
transactional services. In this situation, PaaS brings
interesting possibilities, especially in situations where
several developers collaborate on a project or when other
external actors need to interact with the development
process. However, this service model is not recommended
for the development of applications which require
reconfiguration and modification of the underlying
infrastructure. In addition, the PaaS is completely
dependent of the supplier in terms of availability, platform
utilization, interfaces and tools. Reference [19] explained
that Paas can be inadequate when it comes to applications
requiring high portability, or if the proprietary language
offered by the vendor can impact the development process.
Indeed, the supplier can offer services, which can be
interfaces or languages that he has developed, which can
affect the migration of applications from one Cloud to
another generating the phenomenon of data lock-in. To
overcome this problem, efforts have been made to develop
Open Platform as a Service (OPaas). OPaas is a step in

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.7, July 2023

93

PaaS evolution whose purpose is to provide open access to
application programming interfaces (APIs) and standards.

To address the aforementioned issues, several
services (Carriots [20], Xively [4], ThingSpeak [21]) has
been proposed in the Cloud. These services typically
provide an API and various sample applications to use data
collected from open platforms (e.g., Arduino). Service
platforms play a fundamental role in building and
managing context-aware applications. It is crucial to mask
the heterogeneity of hardware, software, data formats,
technologies and communications that characterize these
applications. Some platforms focus on developing
architectures that provide vertical interoperability between
applications and different technologies. For example, the
main objective of Icore [22] and COMPOSE [23] is to
develop an open network architecture based on object
virtualization which encompasses the heterogeneity of the
technologies employed. BlueMix [4] is a PaaS developed
by IBM. It enables rapid development of analytical
applications, visualization dashboards and mobile IoT
applications. AWS IoT [24] is a platform that enables
users to connect devices to AWS Services [5] and other
devices, to secure data and interactions, process and act on
data device, and allow applications to interact with devices
even if they are offline. The SPRINT project [25] provides
a platform to connect software tools used by industrial
companies within the project and allows the integration of
different subsystems at the design level. Other platforms
like BUTLER [26] or MobilityFirst [27] aim to develop
open architectures providing a secure location and context-
aware services.

4. Formal Specification of CATSM

4.1 ACTA Adaptation

In this section, we propose to formalize CATS model
(CATSM) using the ACTA formalism [28, 29].

ACTA is a framework developed to specify transaction
models and define their interactions. This formalism
allows defining (i) the effects of transactions on other
transactions and (ii) the effects of transactions on objects.
The logic of ACTA model is based on the concept of
“transaction” by specifying the relationships between
transactions and the transactions effects on objects. Hence,
the specification of CATSM by ACTA formalism requires
transforming this model into a representation based on
transactions. By analogy, a context-aware transactional
service can be assimilated to a transaction composed of
several sub-transactions. Sub-transactions are the activities
performed by participating services; their properties are
therefore similar to the transactional properties of these
services. According to the CATSM, a context-aware

transactional service is an adaptable transaction composed
of sub-transactions. A sub-transaction can be decomposed
into any level of nesting, resulting in a root transaction and
a set of component sub-transactions. These transactions
are called main transactions. Secondary transactions are
either compensating or alternative transactions. In the
following, we describe the dependencies between sub-
transactions and the root transaction and between main and
secondary sub-transactions regarding the context-
awareness characteristics.

4.1 Axiomatic Definition

In order to develop the axiomatic definition of
CATSM, we used the following notations:

TS is a context-aware transactional service. It is then
considered as an adaptable transaction of the CATSM
model:

TS = { TS1 (p1, p2, p3, p4), … , TSn (p1, p2, p3, p4) }, n > 0 (1)

AltTSi = { AltTSi1 (p1, p2, p3, p4), AltTSi2 (p1, p2, p3,
p4), ... , AltTSis (p1, p2, p3, p4) }, s ≥ 0 (2)

CompTrs ∩ ൓Comp Trs = ∅ (3)

p1 ∈ {Cp, NCp} (4)

p2 ∈ {Rc, NRc} (5)

p3 ∈ {Rp, NRp} (6)

p4 ∈ {Ct, NCt} (7)

P = (p1, p2, p3, p4) (8)

TSi (p1, p2, p3, p4) in (1) denotes a main sub-transaction TSi
and its behavioral profile P. AltTSi in (2) is the set of
alternative sub-transactions of TSi. Equation (3) denotes
CompTrs the set of compensable sub-transactions, and
൓CompTrs the set of non-compensable sub-transactions.
P in (8) specifies the behavioral profile of each sub-
transaction as follows: p1 in (4) denotes the compensable
(Cp) and non-compensable (NCp) sub-transaction, p2 in (5)

denotes the replaceable (Rc) and non-replaceable (NRc)
sub-transaction, p3 in (6) denotes the replayable (Rp) and
non-replayable (NRp) sub-transaction, and p4 in (7)

denotes the critical (Ct) and non-critical (NCt) sub-
transaction.

CompTSi is the compensating transaction of TSi. TSp

denotes a parent transaction.

We present the axiomatic definition of the CATSM model
as follows:

ESTS = ESts = {begin, prepare, commit, abort} (9)

EITS = EIts = {begin} (10)

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.7, July 2023

94

ETTS = ETts = {commit, abort} (11)

(begints ϵ H)) => AdaptationCondition ˄ (ts BD TS) (12)

AltTSik (p1, NRc, p3, p4) ˄ (AdaptationCondition) EBD
TSim (p1, NRc, p3, p4): beginAltTSik ϵ H) =>
(ContextCondition) ˄ (⌐ (beginAltTSim))

(13)

TSp AD TSi (p1, p2, p3, Ct):
(abortTSi ϵ H) => (abortTSp ϵ H)

(14)

TSi (p1, p2, Rp, p4) BAD TSi (p1, p2, Rp, p4):
(beginTSi ϵ H) => (abortTSi  beginTSi)

(15)

TSp CD TSi (Cp, p2, p3, Ct) & TSp CPD TSj (NCp, p2, p3,
Ct) & TSp SCD TSk (NCp, p2, p3, Ct) :
(commitTSp ϵ H) => ((commitTSi ϵ H) => (commitTSi 

commitTSp)) ˄ (prepareTSj  commitTSp) ˄ ((commitTSk

ϵ H) => (commitTSp))

(16)

TSi (NCp, p2, p3, Ct) CD TSj (Cp, p2, p3, Ct) & TSi CPD
TSk (NCp, p2, p3, Ct):
(commitTSi ϵ H) => ((commitTSj ϵ H) =>
(commitTSj  commitTSi)) ˄ (prepareTSk  commitTSi)

(17)

TSi (NCp, p2, p3, Ct) SCD TSp:

(commitTSp ϵ H) => (commitTSj)

(18)

TSi (NCp, p2, p3, NCt) BCD TSp:

(commitTSi ϵ H) => ((commitTSp ϵ H) => (commitTSp

commitTSi))

(19)

Axioms (9), (10) and (11) indicate the significant
events of CATSM model. As decrypted in axiom (12), the
initialization of a sub-transaction is conditioned by the
satisfaction of context conditions and the beginning of the
root transaction. Conditions on the context are fulfilled
when the context current state matches the required values
in the environment descriptor. The initialization of an
alternative transaction in (13) is conditioned by the
satisfaction of context conditions and only an alternative
transaction should be initiated. Context conditions are
satisfied when the context current state matches the
required values in the environment descriptor of the
alternative transaction. Axiom (14) describes that if a
critical sub-transaction is aborted, then the parent
transaction must be cancelled. In axiom (15), a sub-
transaction can only be re-executed if the previous attempt
has been canceled. Axiom (16) indicates that the commit
of the parent transaction depends on the commit of all
compensable sub-transactions, and the preparation of all
critical and non-compensable sub-transactions. In addition,
the commit of the critical non-compensable transaction
involves the commit of the parent transaction. The axiom
presented in (17) inflicts on the critical non-compensable
sub-transaction to commit only after committing all critical
and compensable sub-transactions, and preparing all
critical non-compensable sub-transactions. Axiom (18)
stipulates that the commit of the parent transaction

involves the commit of all critical and non-compensable
sub-transactions. Axiom (19) implies the initialization of
non-critical and non-compensable sub-transactions after
the commit of their parent transaction.

To develop our CATSM model formalism, we used the
following dependencies:

 Commit Dependency: If the transactions ti and tj commit,
the commit of ti must precede that of tj (tj CD ti):

(committj ϵ H) => ((committi ϵ H) => (committi  committj))

 Strong-Commit Dependency: If ti commits, then tj must also
commit (tj SCD ti):

(committj ϵ H) => (committi ϵ H)

 Abort Dependency: If ti aborts, then tj must also abort (tj AD
ti):

(aborttj ϵ H) => (abortti ϵ H)

 Begin Dependency: tj cannot begin if ti has not begun yet (tj
BD ti):

(begintj ϵ H) => (beginti  begintj)

 Begin-on-Commit Dependency: tj cannot be started until ti
commits: (tj BCD ti):

(begintj ϵ H) => (committi  begintj)

 Begin-on-Abort Dependency: tj cannot be started until ti
aborts: (tj BAD ti):

(begintj ϵ H) => (abortti  begintj)

The dependencies in the ACTA formalism are not
sufficient to specify our CATSM model. Thus, in addition to the
dependencies defined by the ACTA formalism that is extensible,
we have defined the following ones:

 Commit-on-Prepare Dependency: tj cannot commit until ti
prepares (tj CPD ti):

(committj ϵ H) => (prepareti  committj)

 Exclusive Begin Dependency: ti can only be started if no tj
has not begun yet: (tj EBD ti):

(beginti ϵ H) => (⌐ (begintj ϵ H))

5. Cloud Service Model for CATS Adaptation

5.1 The proposed Model

In this section, we present a cloud service model for
context-aware transactional services adaptation by
introducing a PaaS service. This service encapsulates a set
of modules for the execution of user requests and allows

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.7, July 2023

95

the adaptation of transactional services according to the
context. Fig. 1 describes the different layers of the cloud
service model.

Fig. 1 Cloud Service Model for CATS Adaptation.

We present a global vision of our CATS service
adaptation platform as illustrated in Fig. 2. It consists of
three main layers: the service layer, the communication
layer and MiCATS middleware. As described in Fig. 2,
MiCATS is built around three APIs: CATS service
composition API, CATS service adaptation API and
CATS service execution API. We introduce each layer
described in the cloud service architecture as follows:

 Services layer:

The evolution of classical information systems into
pervasive information systems leads us to no longer
consider the latter as a set of logical services. Indeed, with
the emergence of context-aware computing, its
technologies are increasingly integrated into the physical
environment, thus offering innovative services to users
who are constantly evolving in this environment. Unlike
traditional information systems, context-aware information
systems can provide both logical and physical services. In
a context-aware information system, users operate in a
service space that offers a set of heterogeneous services
whose objective is to meet the needs of these users. This
space allows the representation of knowledge about users
and their environment, in order to select the most
appropriate service that can meet the requirements of a
given user in a particular context.

 Communication layer:

The communication layer aims to connect the services layer
with MiCATS middleware for context adaptation of transactional
services. User requests, context capture and service invocation
are sent through this layer.

 MiCATS: Middleware for context-aware transactional
service:

MiCATS is the core of our CATS service adaptation platform. Its
main objective is to meet user requirements by generating the

most appropriate transactional services composition regarding a
given context. More emphasis on MiCATS middleware is
provided in a previous work [30].

Fig. 2 CATS service adaptation platform.

5.2 Design Patterns for CATS adaptation

CATS service design approach is used to guide
designers in order to specify the expected functionalities of
their system, as well as the information that will be
captured for better adaptation. This is to keep control over
the definition of the system and its services, while
allowing for a highly dynamic environment. In this section,
we will present an overview of the design process and we
will detail each of its steps.

The proposed design patterns decouple as much as
possible context-awareness design from business aspects
design. Therefore, we add to the business design two other
dedicated areas: context-awareness and adaptation policy
management, inducing two new roles which are the
context-awareness designer and the adaptation policy
designer. We followed SPEM model (Software process
Engineering MetaModel) [OMG, 2008] to define the roles,
activities, and produced results in the area of context-
awareness. As shown in Fig. 3, the first activity is the
specification of environment descriptors taking into
account the business logic, the state of runtime
infrastructure parameters and the environment in which the
user and services evolve. For instance, in the case of flight
reservation, the “Weather” parameter is an example of an
entity to be observed. The second activity concerns the
design of the weights attributed to context dimensions.
These weights will be specified according to CATS
services application domain and the environmental
characteristics of the user. In the case of restaurant

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.7, July 2023

96

reservation with specific conditions (e.g., restaurant with a
terrace), the weight assigned to the context dimension
“Temperature”, for example, will be of vital importance.

Fig. 4 describes the main activities of the adaptation
policy designer. The first activity concerns the
specification of the costs associated with the various
context parameters.

Fig. 3 Activities of Context-awareness designer.

The Infrastructure Context ontology and the
Environment Descriptor Matrix are the inputs of this
activity. The second activity consists of establishing a link
between the artifacts produced by the context-awareness
design process and business logic artifacts through the
definition of alternatives. These alternatives are configured
taking into account the execution costs defined under the
first activity. For example, in the case of an environment
that is subject to frequent disconnections, alternatives will
be configured based on cost optimization in terms of CPU
consumption.

6. Illustrative scenario

In this section, we illustrate a travel arranging system
through a CATS service which allows organizing tours in
the Moroccan touristic city Dakhla. As shown in Table 1,
this service offers the possibility of booking a flight or
buying a train ticket, booking a hotel room and a table in a
restaurant, contacting a tourist guide, and signing up for
surfing sessions.

Fig. 5 shows a succinct prototype for the flight reservation
activity “FlightReservation” associated with the
transactional service “Reserve Flight”. The “Arranging
tours” CATS service follows the RACID execution
contract (i.e., AtomicityDegree = {Relaxed Atomicity})
which offers more flexibility in the execution of its
primitive activities.

Fig. 4 Activities of Adaptation Policy designer.

Let’s consider that a change in the “Weather” context
parameter state occurs. According to CATSM
specification, the adaptation policy performs a first
verification of the condition on the behavioral profile. In
our case, the “FlightReservation” activity has an
alternative (i.e., p3 = {Rp}). The second verification
consists in checking the condition on the “Weather”
parameter (i.e., FlightEnvironmentDesriptor). The
adaptation policy triggers service adaptation by executing
“Reserve Train” service each time the activity is
replaceable and the “Weather” parameter changes from
“nice” state to “very_bad” state (i.e., AdaptationCondition).
As shown in Fig. 5, “FlightReservation” activity is critical
(i.e., PF = {p1, p2, Rp, Ct}). In other words, it represents a
crucial task for the CATS service “Arraging Tours”.
Imagine that a context change occurs while running the
“Reserve Flight” service related to a disconnection event.
According to CATSM specification, “FlightReservation”
is a replaceable activity. In this case, the adaptation
strategy consists of running “Reserve Flight” service on
the local device each time the activity is replaceable, the

SPEM Context-awareness designer

Context-awareness
designer

Environment
Descriptor Matrix

Design environment
descriptors

Infrastructure
Context Ontology Design context

dimension weights

Environment
Context Ontology

Business-logic
metamodel

Context Dimension
Weights

SPEM Adaptation Policy designer

Business-logic
metamodel

Alternative
execution cost

Definition of
policy fi le
Alternatives

design context
parameters cost

Design
alternatives

Environment
Descriptor Matrix

Adaptation
policy designer

Infrastructure
Context Ontology

Alternative
execution cost

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.7, July 2023

97

connection state is disconnected, memory is available to store data, and bandwidth is medium.

Table 1: CATS service “Arranging Tours” description

Arranging Tours Service

Reserve
Flight

Input

UserCredentials, UserProfile, FlightReservationI (cityFrom, cityTo,
nbPassengers, departureDate, arrivalDate), CR, TR

Output FlightReservationO (FlightDetail)

Contextual requirements
(CR)

Period, AirlineCompany, FlightClass, Price

Transactional requirements
(TR)

Replaceable, Critical, Compensable

Reserve
Train

Input

UserCredentials, UserProfile, TrainReservationI (cityFrom, cityTo,
nbPassengers, departureDate, arrivalDate), CR, TR

Output TrainReservationO (TrainDetail)

Contextual requirements
(CR)

Period, CabinClass

Transactional requirements
(TR)

Replayable, Compensable

Book
Hotel

Input

UserCredentials, UserProfile, HotelReservationI (city, nbAdults,
roomType, departureDate, arrivalDate), CR, TR

Output HotelReservationO (HotelDetail)

Contextual requirements
(CR)

HotelClass, Proximity, BoardBasis

Transactional requirements
(TR)

Replaceable, Critical, non-Compensable

Reserve
Restaurant

Input UserCredentials, UserProfile, RestaurantReservationI (city, nbAdults,
roomType, departureDate, arrivalDate), CR, TR

Output RestaurantReservationO (RestaurantDetail)

Contextual requirements
(CR)

CulinarSpeciality

Transactional requirements
(TR)

Replaceable, non-Compensable

Book
Surf

sessions

Input UserCredentials, UserProfile, ActivityReservationI (city, nbAdults,
nbSessions, period), CR, TR

Output ActivityReservationO (ActivityDetail)

Contextual requirements
(CR)

AbilityLevel, Age

Transactional requirements
(TR)

Replayable, non-Compensable

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.7, July 2023

98

Fig. 4 “Arranging Tours” service CATSM specification.

7. Conclusion

The positioning of context-aware transactional
services in current B2B systems has been felt in recent
years. In this paper, we have presented (i) a model for
context adaptation of transactional services. This model
supports dynamic changes of transactional needs and can
adapt to the volatility of services by introducing the

concept of alternatives. CATSM model allows
transactional services to be classified according to their
level of atomicity into four classes: transactional services
with strict atomicity, semantic atomicity, semi-atomicity
and relaxed atomicity. In addition, the specification of
CATSM model by the ACTA formalism has enabled to
define the properties of this model and to specify the
relationships between its different structures, (ii) a reliable
architecture for the support of transactional services in

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.7, July 2023

99

context-aware systems; which constitutes a framework for
the adaptation of this class of services. We have also
described the various functionalities supported by the
proposed platform. The underlying adaptation architecture
is based on a cloud service model.

It is important to point out that our work proposes a
set of reflections constituting the first step towards the
implementation of a robust OPaaS platform. The main
research perspectives that appear at the end of this
proposal relate to the research questions that have
remained open and that should be explored in order to
complete this work: (i) the PoC on real industrial scenarios
for final validation through the evaluation and testing of
the platform in environments with thousands of instances,
(ii) the development of a DSL-based approach for “CATS”
services modeling.

References
[1] The OpenCloudware project. The opencloudware project,

2015. Available: http://www.opencloudware.org/
[2] T. Aubonnet, N. Simoni. Service creation and self-

management mechanisms for mobile cloud computing. In
Wired/Wireless Internet Communication - 11th International
Conference, WWIC, St. Petersburg, Russia. pp. 43-55, 2013.
doi: 10.1007/978-3-642-38401-1_4.

[3] T. Aubonnet, L. Henrio, S. Kessal, O. Kulankhina,
F.Lemoine, E. Madelaine, C. Ruz, N. Simoni. Management
of service composition based on self-controlled components.
Journal of Internet Services and Applications, 6(15):17,
2015. doi : 10.1186/s13174-015-0031-7.

[4] IBM Bluemix. IBM Bluemix, 2018. Available:
https://www.ibm.com/cloud-computing/ bluemix

[5] Amazon Web Services. Amazon web services, 2018.
Available: https://aws.amazon.com

[6] Microsoft Azure. Microsoft azure, 2018. Available:
https://azure.microsoft.com/fr-fr/

[7] A. K. Dey, G.D. Abowd, Towards a Better Understanding
of Context and Context-Awareness, CHI 2000, Workshop
on the What, Who, Where, When, and How of Context-
Awareness, The Hague, The Netherlands, 2000.

[8] W. Xiaohang, T. Gu, D. Zhang, J. Dong, H. K. Pung.
Ontology Based Context Modeling and Reasoning using
OWL. 2nd IEEE International Conference on Pervasive
Computing and Communication (PerCom’04), March 14,
2004, Orlando, Florida.

[9] M. Miraoui, C. Tadj, C.B. Amar, Context Modeling and
Context-Aware Service Adaptation for Pervasive Computing
Systems, International Journal of Computer and Information
Science and Engineering, vol 2, N 3, pp. 148-157, 2008.

[10] N. Fernando, S. W. Loke, W. Rahayu, Mobile cloud
computing: A survey, in Future Generation Computer
Systems Vol. 29 Issue 1, pp. 84-106, January 2013.

[11] R. Kaur, A. Kaur, A Review Paper on Evolution of Cloud
Computing, its Approaches and Comparison with Grid
Computing, in (IJCSIT) International Journal of Computer
Science and Information Technologies, Vol. 5 Issue 5, pp.
6060-6063, 2014.

[12] R. Buyya, Y. Chee Shin, S. Venugopal, Market-oriented
cloud computing: vision, hype, and reality for delivering IT
services as computing utilities, in 10th IEEE International
Conference on High Performance Computing and
Communications, pp.5–13, 25–27 September 2008 Dalian,
China.

[13] B. P. Rimal, A. Jukan, D. Katsaros, Y. Goeleven.
Architectural Requirements for Cloud Computing Systems :
An Enterprise Cloud Approach. Journal of Grid Computing,
vol. 9, no. 1, pp. 3-26, 2010.

[14] T. Dillon, C.Wu, E. Chang. Cloud Computing : Issues and
Challenges. 24th IEEE International Conference on
Advanced Information Networking and Applications, pp.
27–33, 2010.

[15] H. J. La, S. D. Kim, A conceptual framework for
provisioning context-aware mobile cloud services, in
Proceedings of IEEE International Conference on Cloud
Computing, pp. 466-473, 2010.

[16] J. Fu, H. W. Tu, M. Biao, J. Baldwin, F. B. Bastani, Virtual
services in cloud computing, in Proceedings of the 6th
World Congress on Services, pp. 467-472, 2010.

[17] Y. Zhu, R. Y. Shtykh, Q. Jin, A human-centric framework
for context-aware flowable services in cloud computing
environments, in Information Sciences, Vol.257, pp. 231-
247, 2012.

[18] H. Ma, K. Schewe, Q. Wang, An abstract model for service
provision, search and composition, in Proceedings of IEEE
AsiaPacific Services Computing Conference (APSCC 2009),
pp. 95-102, 2009.

[19] B. Kepes. Understanding the Cloud Computing Stack : SaaS,
PaaS, IaaS. White paper, 2013.

[20] Azurewatch. Azurewatch, 2018. Available:
http://www.cloudmonix.com/aw/

[21] H. A. Soulimani, P. Coude, N. Simoni. User-centric and
qos-based service session. In IEEE Asia-Pacific Services
Computing Conference, APSCC 2011, Jeju, Korea (South),
December 12-15, 2011, pp. 267–274, 2011. doi :
10.1109/APSCC.2011.64.

[22] Iot-Icore. Icore-Internet Connected Objects for
Reconfigurable Ecosystem, FP7-ICT 287708, 2014.
Available:
https://cordis.europa.eu/project/rcn/100873_fr.html

[23] Compose. COMPOSE-Collaborative Open Market to Place
Objects at your SErvice, FP7-ICT 317862, 2012. Available:
http://www.compose-project.eu/

[24] AWS IoT. AWS IoT, 2018. Available:
https://aws.amazon.com/iot/

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.7, July 2023

100

[25] Sprint. SPRINT -Software Platform for Integration of
Engineering and Things, FP7-ICT 257909, 2010. Available:
http://www.sprint-iot.eu/

[26] BUTLER-uBiquitous, secUre inTernet-of-things with
Location and contExt-awaReness - TRIMIS - European
Commission, July 2016.
Available:https://trimis.ec.europa.eu/project/ubiquitous-
secure-internet-things-location-and-contextawareness

[27] D. Raychaudhuri, K. Nagaraja, A. Venkataramani.
MobilityFirst : A Robust and Trustworthy Mobility-centric
Architecture for the Future Internet. SIGMOBILE Mob.
Comput. Commun. Rev., 16(3), pp. 2-13, December 2012.
ISSN1559-1662. doi : 10.1145/2412096.2412098.

[28] P.K. Chrysanthis, K. Ramamritham, ACTA: A Framework
for Specifying and Reasoning about Transaction Structure
and Behavior, ACM SIGMOD, 1990.

[29] P.K. Chrysanthis, K. Ramamritham, Synthesis of extended
transaction models using ACTA, ACM Transactions on
Database Systems (TODS), vol. 19, Issue 3, September
1994, pp. 450- 491.

[30] W. Ettazi, H. Hafiddi, M. Nassar. CATS-CAE Reflective
Middleware Framework for Adapting Context-Aware
Transactional Services: Using a Hybrid Policy-Based
Approach, International Journal of Web Services Research
(IJWSR), Volume 17, Issue 2, 2020.

