DOI QR코드

DOI QR Code

An Optimized Deep Learning Techniques for Analyzing Mammograms

  • Satish Babu Bandaru (Department of Computer Science and Engineering, Annamalai University) ;
  • Natarajasivan. D (Department of Computer Science and Engineering, Faculty of Computer Science and Engineering Annamalai University) ;
  • Rama Mohan Babu. G (Department of Computer Science and Engineering (AI & ML), RVR & JC College of Engineering)
  • 투고 : 2023.07.05
  • 발행 : 2023.07.30

초록

Breast cancer screening makes extensive utilization of mammography. Even so, there has been a lot of debate with regards to this application's starting age as well as screening interval. The deep learning technique of transfer learning is employed for transferring the knowledge learnt from the source tasks to the target tasks. For the resolution of real-world problems, deep neural networks have demonstrated superior performance in comparison with the standard machine learning algorithms. The architecture of the deep neural networks has to be defined by taking into account the problem domain knowledge. Normally, this technique will consume a lot of time as well as computational resources. This work evaluated the efficacy of the deep learning neural network like Visual Geometry Group Network (VGG Net) Residual Network (Res Net), as well as inception network for classifying the mammograms. This work proposed optimization of ResNet with Teaching Learning Based Optimization (TLBO) algorithm's in order to predict breast cancers by means of mammogram images. The proposed TLBO-ResNet, an optimized ResNet with faster convergence ability when compared with other evolutionary methods for mammogram classification.

키워드

참고문헌

  1. Rodriguez-Ruiz, A., Lang, K., Gubern-Merida, A., Broeders, M., Gennaro, G., Clauser, P., ... & Sechopoulos, I. (2019). Stand-alone artificial intelligence for breast cancer detection in mammography: comparison with 101 radiologists. JNCI: Journal of the National Cancer Institute, 111(9), 916-922. https://doi.org/10.1093/jnci/djy222
  2. Kim, E. K., Kim, H. E., Han, K., Kang, B. J., Sohn, Y. M., Woo, O. H., & Lee, C. W. (2018). Applying data-driven imaging biomarker in mammography for breast cancer screening: preliminary study. Scientific reports, 8(1), 1-8. https://doi.org/10.1038/s41598-018-21215-1
  3. Altan, G. (2020). Deep Learning-based Mammogram Classification for Breast Cancer. International Journal of Intelligent Systems and Applications in Engineering, 8(4), 171-176. https://doi.org/10.18201/ijisae.2020466308
  4. Chougrad, H., Zouaki, H., & Alheyane, O. (2018). Deep convolutional neural networks for breast cancer screening. Computer methods and programs in biomedicine, 157, 19-30. https://doi.org/10.1016/j.cmpb.2018.01.011
  5. Zhou, J., Yang, X., Zhang, L., Shao, S., & Bian, G. (2020). Multisignal VGG19 Network with Transposed Convolution for Rotating Machinery Fault Diagnosis Based on Deep Transfer Learning. Shock and Vibration, 2020.
  6. Khan, I. U., & Aslam, N. (2020). A deep-learning-based framework for automated diagnosis of COVID19 using X-ray images. Information, 11(9), 1-13. https://doi.org/10.3390/info11090419
  7. Li, H., Zhuang, S., Li, D. A., Zhao, J., & Ma, Y. (2019). Benign and malignant classification of mammogram images based on deep learning. Biomedical Signal Processing and Control, 51, 347-354. https://doi.org/10.1016/j.bspc.2019.02.017
  8. Agarwal, R., Diaz, O., Yap, M. H., Llado, X., & Marti, R. (2020). Deep learning for mass detection in Full Field Digital Mammograms. Computers in biology and medicine, 121, 103774.
  9. Chakravarthy, S. S., & Rajaguru, H. (2021). Automatic Detection and Classification of Mammograms Using Improved Extreme Learning Machine with Deep Learning. IRBM.
  10. Patil, R. S., & Biradar, N. (2020). Automated mammogram breast cancer detection using the optimized combination of convolutional and recurrent neural network. Evolutionary Intelligence, 1-16.
  11. Kavitha, T., Mathai, P. P., Karthikeyan, C., Ashok, M., Kohar, R., Avanija, J., & Neelakandan, S. (2021). Deep Learning Based Capsule Neural Network Model for Breast Cancer Diagnosis Using Mammogram Images. Interdisciplinary Sciences: Computational Life Sciences, 1-17.
  12. Reenadevi, R., Sathiya, T., & Sathiyabhama, B. (2021). Classification of Digital Mammogram Images using Wrapper based Chaotic Crow Search Optimization Algorithm. Annals of the Romanian Society for Cell Biology, 2970-2979.
  13. Ashok, A., Vijayan, D., & Lavanya, R. (2021, June). Computer aided mass segmentation in mammogram images using Grey wolf Optimized Region growing technique. In 2021 5th International Conference on Trends in Electronics and Informatics (ICOEI) (pp. 1082-1087). IEEE.
  14. Melekoodappattu, J. G., Subbian, P. S., & Queen, M. F. (2021). Detection and classification of breast cancer from digital mammograms using hybrid extreme learning machine classifier. International Journal of Imaging Systems and Technology, 31(2), 909-920. https://doi.org/10.1002/ima.22484
  15. Sahinbas, K., & Catak, F. O. (2021). Transfer learning-based convolutional neural network for COVID-19 detection with X-ray images. In Data Science for COVID-19 (pp. 451-466). Academic Press.
  16. Xiao, J., Wang, J., Cao, S., & Li, B. (2020, April). Application of a novel and improved VGG-19 network in the detection of workers wearing masks. In Journal of Physics: Conference Series (Vol. 1518, No. 1, p. 012041). IOP Publishing.
  17. Ramzan, F., Khan, M. U. G., Rehmat, A., Iqbal, S., Saba, T., Rehman, A., & Mehmood, Z. (2020). A deep learning approach for automated diagnosis and multi-class classification of Alzheimer's disease stages using resting-state fMRI and residual neural networks. Journal of medical systems, 44(2), 1-16. https://doi.org/10.1007/s10916-019-1451-x
  18. Gao, M., Chen, J., Mu, H., & Qi, D. (2021). A Transfer Residual Neural Network Based on ResNet34 for Detection of Wood Knot Defects. Forests, 12(2), 212.
  19. Tsochatzidis, L., Costaridou, L., & Pratikakis, I. (2019). Deep learning for breast cancer diagnosis from mammograms-a comparative study. Journal of Imaging, 5(3), 37.
  20. Thawkar, S. (2021). A hybrid model using teaching-learning-based optimization and Salp swarm algorithm for feature selection and classification in digital mammography. Journal of Ambient Intelligence and Humanized Computing, 1-16.
  21. Jafar, A., & Myungho, L. (2020, August). Hyperparameter Optimization for Deep Residual Learning in Image Classification. In 2020 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOSC) (pp. 24-29). IEEE.