참고문헌
- Rodriguez-Ruiz, A., Lang, K., Gubern-Merida, A., Broeders, M., Gennaro, G., Clauser, P., ... & Sechopoulos, I. (2019). Stand-alone artificial intelligence for breast cancer detection in mammography: comparison with 101 radiologists. JNCI: Journal of the National Cancer Institute, 111(9), 916-922. https://doi.org/10.1093/jnci/djy222
- Kim, E. K., Kim, H. E., Han, K., Kang, B. J., Sohn, Y. M., Woo, O. H., & Lee, C. W. (2018). Applying data-driven imaging biomarker in mammography for breast cancer screening: preliminary study. Scientific reports, 8(1), 1-8. https://doi.org/10.1038/s41598-018-21215-1
- Altan, G. (2020). Deep Learning-based Mammogram Classification for Breast Cancer. International Journal of Intelligent Systems and Applications in Engineering, 8(4), 171-176. https://doi.org/10.18201/ijisae.2020466308
- Chougrad, H., Zouaki, H., & Alheyane, O. (2018). Deep convolutional neural networks for breast cancer screening. Computer methods and programs in biomedicine, 157, 19-30. https://doi.org/10.1016/j.cmpb.2018.01.011
- Zhou, J., Yang, X., Zhang, L., Shao, S., & Bian, G. (2020). Multisignal VGG19 Network with Transposed Convolution for Rotating Machinery Fault Diagnosis Based on Deep Transfer Learning. Shock and Vibration, 2020.
- Khan, I. U., & Aslam, N. (2020). A deep-learning-based framework for automated diagnosis of COVID19 using X-ray images. Information, 11(9), 1-13. https://doi.org/10.3390/info11090419
- Li, H., Zhuang, S., Li, D. A., Zhao, J., & Ma, Y. (2019). Benign and malignant classification of mammogram images based on deep learning. Biomedical Signal Processing and Control, 51, 347-354. https://doi.org/10.1016/j.bspc.2019.02.017
- Agarwal, R., Diaz, O., Yap, M. H., Llado, X., & Marti, R. (2020). Deep learning for mass detection in Full Field Digital Mammograms. Computers in biology and medicine, 121, 103774.
- Chakravarthy, S. S., & Rajaguru, H. (2021). Automatic Detection and Classification of Mammograms Using Improved Extreme Learning Machine with Deep Learning. IRBM.
- Patil, R. S., & Biradar, N. (2020). Automated mammogram breast cancer detection using the optimized combination of convolutional and recurrent neural network. Evolutionary Intelligence, 1-16.
- Kavitha, T., Mathai, P. P., Karthikeyan, C., Ashok, M., Kohar, R., Avanija, J., & Neelakandan, S. (2021). Deep Learning Based Capsule Neural Network Model for Breast Cancer Diagnosis Using Mammogram Images. Interdisciplinary Sciences: Computational Life Sciences, 1-17.
- Reenadevi, R., Sathiya, T., & Sathiyabhama, B. (2021). Classification of Digital Mammogram Images using Wrapper based Chaotic Crow Search Optimization Algorithm. Annals of the Romanian Society for Cell Biology, 2970-2979.
- Ashok, A., Vijayan, D., & Lavanya, R. (2021, June). Computer aided mass segmentation in mammogram images using Grey wolf Optimized Region growing technique. In 2021 5th International Conference on Trends in Electronics and Informatics (ICOEI) (pp. 1082-1087). IEEE.
- Melekoodappattu, J. G., Subbian, P. S., & Queen, M. F. (2021). Detection and classification of breast cancer from digital mammograms using hybrid extreme learning machine classifier. International Journal of Imaging Systems and Technology, 31(2), 909-920. https://doi.org/10.1002/ima.22484
- Sahinbas, K., & Catak, F. O. (2021). Transfer learning-based convolutional neural network for COVID-19 detection with X-ray images. In Data Science for COVID-19 (pp. 451-466). Academic Press.
- Xiao, J., Wang, J., Cao, S., & Li, B. (2020, April). Application of a novel and improved VGG-19 network in the detection of workers wearing masks. In Journal of Physics: Conference Series (Vol. 1518, No. 1, p. 012041). IOP Publishing.
- Ramzan, F., Khan, M. U. G., Rehmat, A., Iqbal, S., Saba, T., Rehman, A., & Mehmood, Z. (2020). A deep learning approach for automated diagnosis and multi-class classification of Alzheimer's disease stages using resting-state fMRI and residual neural networks. Journal of medical systems, 44(2), 1-16. https://doi.org/10.1007/s10916-019-1451-x
- Gao, M., Chen, J., Mu, H., & Qi, D. (2021). A Transfer Residual Neural Network Based on ResNet34 for Detection of Wood Knot Defects. Forests, 12(2), 212.
- Tsochatzidis, L., Costaridou, L., & Pratikakis, I. (2019). Deep learning for breast cancer diagnosis from mammograms-a comparative study. Journal of Imaging, 5(3), 37.
- Thawkar, S. (2021). A hybrid model using teaching-learning-based optimization and Salp swarm algorithm for feature selection and classification in digital mammography. Journal of Ambient Intelligence and Humanized Computing, 1-16.
- Jafar, A., & Myungho, L. (2020, August). Hyperparameter Optimization for Deep Residual Learning in Image Classification. In 2020 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion (ACSOSC) (pp. 24-29). IEEE.