DOI QR코드

DOI QR Code

A Study on the Quality Analysis of Biodiesel for Ship's Fuel Utilization

바이오디젤의 선박 연료 활용을 위한 품질 분석

  • Ha-seek Jang (Korea Maritime Transportation Safety Authority) ;
  • Won-ju Lee (Division of Marine System Engineering, Korea Maritime and Ocean University) ;
  • Min-ho Lee (Korea Petroleum Quality & Distribution Authority) ;
  • Yong-gyu Na (Korea Petroleum Quality & Distribution Authority) ;
  • Chul-ho Baek (Korea Maritime Transportation Safety Authority) ;
  • Beom-seok Noh (Korea Institute of Maritime and Fisheries Technology) ;
  • Jun-soo Kim (Korea Institute of Maritime and Fisheries Technology)
  • 장하식 (한국해양교통안전공단) ;
  • 이원주 (한국해양대학교 기관시스템공학부) ;
  • 이민호 (한국석유관리원 연비배출가스기술센터) ;
  • 나용규 (한국석유관리원 연비배출가스기술센터) ;
  • 백철호 (한국해양교통안전공단) ;
  • 노범석 (한국해양수산연수원) ;
  • 김준수 (한국해양수산연수원)
  • Received : 2023.06.02
  • Accepted : 2023.06.27
  • Published : 2023.06.30

Abstract

Biodiesel is known as an environmentally friendly neutral fuel, and a policy of obligatory mixing of a certain ratio is implemented on land. In this study, to verify the feasibility of using biodiesel as a ship fuel, component analysis, metal corrosion test, and storage stability test were performed on the mixing ratios of 0 %, 5 %, 10 %, and 20 % of marine diesel and biodiesel. Component analysis evaluated a total of eight factors including density, kinematic viscosity and flash point according to ISO 8217:2017 standards and the reliability of biodiesel through metal corrosion tests and storage stability tests under atmosphere temperature and harsh conditions (60 ℃) for 180 days. Results demonstrate that component analysis satisfied the ISO 8217:2017 standard in all biodiesel mixing ratios. Furthermore, as the biodiesel mixing ratio increased, the kinematic viscosity, density, and acid value increased and the sulfur content decreased. Metal corrosion rarely occurred in the case of carbon steel, iron, aluminum, and nickel, whereas in the case of copper, corrosion occurred under the influence of oxygen-rich biodiesel under the harsh conditions (60 ℃) of 20 % biodiesel mixture. As for storage stability, discoloration, sludge formation, and fuel separation were not visually confirmed.

바이오디젤은 중립연료로써 친환경 연료로 알려져 있으며, 육상에서는 일정 비율을 의무 혼합하는 정책을 시행하고 있다. 본 연구에서는 바이오디젤의 선박 연료로써의 사용 가능성을 검증하기 위해 선박용 경유와 바이오디젤의 혼합비율 0 %, 5 %, 10 %, 20 %에 대해 성분 분석, 금속 부식성 실험, 저장 안정성 실험을 수행하였다. 성분 분석은 ISO 8217:2017 기준에 따라 밀도, 동점도, 인화점 등 총 8가지를 평가하였으며, 180일 동안 상온과 가혹 조건(60 ℃)에서 금속 부식성 실험과 저장 안정성 실험을 통해 바이오디젤 신뢰성을 검증하였다. 연구 결과, 성분 분석은 바이오디젤 모든 혼합비율에서 ISO 8217:2017 기준을 만족하였으며, 바이오디젤 비율에 따라 동점도, 밀도, 산값은 혼합비율이 높아질수록 높게 나타났으며, 황분은 혼합비율이 높아질수록 낮게 나타났다. 금속 부식성은 탄소강, 철, 알루미늄, 니켈의 경우 부식이 거의 발생하지 않았으나, 구리의 경우 60 ℃ 환경 바이오디젤 20 % 혼합에서 산소가 풍부한 바이오디젤의 영향으로 부식이 발생하였다. 저장 안정성은 모든 바이오디젤 혼합비율을 180일 동안 상온과 가혹 조건에서 저장한 결과, 변색, 슬러지 발생, 연료 분리가 육안으로 확인되지 않았다.

Keywords

Acknowledgement

본 논문은 해양수산부의 지원으로 "2022년 친환경 신기술 해상실증을 위한 퇴역 관공선 개조·운영"에 의해 수행된 연구입니다.

References

  1. Ali, Y., M. A. Hanna, and S. L. Cuppett(1995), Fuel properties of tallow and soybean oil esters, J. Am. Oil Chem, Vol. 72, pp. 1557-1564. https://doi.org/10.1007/BF02577854
  2. Alves, S. M., F. K. Dutra-Pereira, and T. C. Bicudo(2019), Influence of stainless steel corrosion on biodiesel oxidative stability during storage, Fuel, Vol. 249, pp. 73-79. https://doi.org/10.1016/j.fuel.2019.03.097
  3. Atabani, A. E., A. S. Silitonga, H. C. Ong, T. M. I. Mahlia, H. H. Masjuki, I. A. Badruddin and H. Fayaz(2013), Non-edible vegetable oils: a critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production, Renew Sustain Energy, Vol. 18, pp. 211-245. https://doi.org/10.1016/j.rser.2012.10.013
  4. Atadashi, I. M., M. K. Aroua, A. R. Abdul Aziz and M. N. M. Sulaiman(2012), Production of biodiesel using high free fatty acid feedstocks, Renew Sust. Energ, Vol. 16, No. 5, pp. 3275-3286. https://doi.org/10.1016/j.rser.2012.02.063
  5. Bilgili, L.(2021), Life cycle comparison of marine fuels for IMO 2020 Sulphur Cap, Science of The Total Environment, Vol. 774, p. 145.
  6. Christensen, E. and R. L. McCormick(2014), Long-term storage stability of biodiesel and biodiesel blends, Fuel Processing Technology, Vol. 128, pp. 339-348. https://doi.org/10.1016/j.fuproc.2014.07.045
  7. CIMAC(2013), Guideline for ship owners and operators on managing distillate fuels up to 7.0% v/v FAME (biodiesel).
  8. Concawe(2019), A look into e-fuels in transport system in Europe(2030-2050), Concawe review, Vol. 28, pp. 4-22.
  9. Danielis, R., M. Scorrano, and M. Giansoldati(2022), Decarbonising transport in Europe: Trends, goals, policies and passenger car scenarios, Research in Transportation Economics, Vol. 91.
  10. Demirbas, A.(2009), Political, economic and environmental impacts of biofuels: A review, Applied Energy, Vol. 86, pp. S108-S117. https://doi.org/10.1016/j.apenergy.2009.04.036
  11. Fazal, M. A., A. S. M. A. Haseeb, and H. H. Masjuki(2011), Biodiesel feasibility study: an evaluation of material compatibility; performance; emission and engine durability, Renew Sustain Energy Rev, Vol. 15, pp. 1314-1324. https://doi.org/10.1016/j.rser.2010.10.004
  12. Fernando, S., P. Karra, R. Hernandez, and S. K. Jha(2007), Effect of incompletely converted soybean oil on biodiesel quality, Energy, Vol. 32, No. 5, pp. 844-851. https://doi.org/10.1016/j.energy.2006.06.019
  13. Geller, D. P., T. T. Adams, J. W. Goodrum, and J. Pendergrass(2008), Storage stability of poultry fat and diesel fuel mixtures: specific gravity and viscosity, Fuel, Vol. 87, pp. 92-102. https://doi.org/10.1016/j.fuel.2007.03.043
  14. Gritsenko, D.(2017), Regulating GHG Emissions from shipping: Local, global or polycentric approach?, Marine Policy, Vol. 84, pp. 130-133. https://doi.org/10.1016/j.marpol.2017.07.010
  15. ISO 8217:2017, Petroleum products - Fuels (Class F) - Specifications of marine fuels.
  16. Mankowski, G., J. P. Duthil, and A. Giustit(1997), The pit morphology on copper in chloride and sulphate-containing solutions, Corros Sci, Vol. 39, pp. 27-42. https://doi.org/10.1016/S0010-938X(96)00100-X
  17. Mofijur, M., H. H. Masjuki, M. A. Kalam, and A. E. Atabani (2013), Evaluation of biodiesel blending, engine performance and emissions characteristics of Jatropha curcas methyl ester: Malaysian perspective, Energy, Vol. 55, pp. 879-887. https://doi.org/10.1016/j.energy.2013.02.059
  18. Palani, Y., C. Devarajan, D. Manickam, and S. Thanikodi (2022), Performance and emission characteristics of biodiesel-blend in diesel engine, Environmental Engineering Research, Vol. 27, No. 1, pp. 94-105.
  19. Pinto, A. C., L. L. Guarieiro, M. J. Rezende, N. M. Ribeiro, E. A. Torres, and W. A. Lopes(2005), Biodiesel: an overview, J. Braz. Chem, Vol. 16, pp. 1313-1330. https://doi.org/10.1590/S0103-50532005000800003
  20. Rao, P. V.(2011), Experimental investigations on the Influence of Properties of Jatropha biodiesel on performance, combustion and emission characteristics of a DI-CI Engine, World Acad. Sci. Eng. Technol, Vol. 5, pp. 855-868.
  21. Schinas, O. and C. N. Stefanakos(2014), Selecting technologies towards compliance with MARPOL Annex VI: The perspective of operators, Transportation Research Part D: Transport and Environment, Vol. 28, pp. 28-40. https://doi.org/10.1016/j.trd.2013.12.006
  22. Singh, B., J. Korstad, and Y. C. Sharma(2012), A critical review on corrosion of compression ignition (CI) engine parts by biodiesel and biodiesel blends and its inhibition, Renewable and Sustainable Energy Reviews, Vol. 16, NO. 5, pp. 3401-3408. https://doi.org/10.1016/j.rser.2012.02.042
  23. Tesfa, B., R. Mishra, F. Gu, and N. Powles(2010), Prediction models for density and viscosity of biodiesel and their effects on fuel supply system in CI engines, Renew Energ, Vol. 36, No. 12, pp. 2752-2760. https://doi.org/10.1016/j.renene.2010.04.026
  24. Van, T. C., J. Ramirez, T. Rainey, Z. Ristovski, and R. J. Brown(2019), Global impacts of recent IMO regulations on marine fuel oil refining processes and ship emissions, Transportation Research Part D: Transport and Environment, Vol. 70, pp. 123-134. https://doi.org/10.1016/j.trd.2019.04.001
  25. Wang, H., A. Gross, and J. Liu(2022), Influence of methanol addition on bio-oil thermal stability and corrosivity, Chemical Engineering Journal, Vol. 433, Part. 3, pp. 133692.
  26. WinGD(2020), Next generation technologies to safeguard LNG fuelled engine investments.