Acknowledgement
This work was financially supported by UIDB/04708/2020 and UIDP/04708/2020 of CONSTRUCT - Institute of R&D in Structures and Construction, Portugal funded by the national funds through the FCT/MCTES (PIDDAC). The second and fourth authors acknowledge the Portuguese Foundation for Science and Technology (FCT) for the support of the grants SFRH/BD/146265/2019 and SFRH/BD/143817/2019, respectively. Acknowledgements are especially due to Dr Cristina Raminhos from 'Metropolitano de Lisboa, E.P.E.' for providing the samples of TP-Lisbon sand. The authors also cknowledge the technical support given by Eng. Daniela Coelho and Mr. Armando Pinto of LabGeo during the development of the experimental program.
References
- Been, K. and Jefferies, M. (1985), "A state parameter for sands", Geotechnique, 35(2), 99-112. https://doi.org/10.1680/geot.1985.35.2.99.
- Been, K. and Jefferies, M. (2004), "Stress-dilatancy in very loose sand", Can. Geotech. J., 41(5), 972-989. https://doi.org/10.1139/T04-038.
- Boulanger, R.W. and Ziotopoulou, K. (2017), PM4SAND (version 3.1): A sand plasticity model for earthquake engineering applications. Davis, California, USA. Retrieved from https://ucdavis.app.box.com/s/wvyr69j5cmq3iu6o9fpzlmzif8r2bwv8.
- CEN. ISO 17892-9 (2018), Geotechnical investigation and testing - Laboratory testing of soil - Part 9, Consolidated triaxial compression tests on water saturated soils, International Organization for Standardization, Brussels.
- Cho, G.C., Dodds, J. and Santamarina, J.C. (2006), "Particle shape effects on packing density, stiffness, and strength: Natural and crushed sands", J. Geotech. Geoenviron. Eng., 132(5), 591-602. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(591).
- Desai, C.S. (2005), "Constitutive modeling for geologic materials: significance and directions", Int. J. Geomech., 5(2), 81-84. https://doi.org/10.1061/(ASCE)1532-3641(2005)5:2(81).
- Ferreira, C., Diaz-Duran, F., Viana da Fonseca, A. and Cascante, G. (2021), "New approach to concurrent Vs and Vp measurements using bender elements", Geotech. Test. J., 44(6), 1801. https://doi.org/10.1520/GTJ20200207.
- Ghafghazi, M. and Shuttle, D. (2008), "Interpretation of sand state from cone penetration resistance", Geotechnique, 58(8), 623-634. https://doi.org/10.1680/geot.2008.58.8.623.
- Giretti, D., Fioravante, V., Been, K. and Dickenson, S. (2018), "Mechanical properties of a carbonate sand from a dredged hydraulic fill", Geotechnique, 68(5), 410-420. https://doi.org/10.1680/jgeot.16.P.304.
- Gong, J., Cheng, L., Zhao, L., Zou, J., Li, L. and Nie, Z. (2021), "Study on the packing and shear characteristics of granular mixtures via the DEM", Geomech. Eng., 27(3), 223-237. https://doi.org/10.12989/gae.2021.27.3.223.
- Gouveia, F., Viana da Fonseca, A., Carrilho Gomes, R. and Teves-Costa, P. (2018), "Deeper Vs profile constraining the dispersion curve with the ellipticity curve: A case study in Lower Tagus Valley, Portugal", Soil Dyn. Earthq. Eng., 109, 188-198. https://doi.org/10.1016/J.SOILDYN.2018.03.010.
- Gu, X., Yang, J. and Huang, M. (2013), "Laboratory measurements of small strain properties of dry sands by bender element", Soils Found., 53(5), 735-745. https://doi.org/10.1016/j.sandf.2013.08.011.
- Jamil, I., Ahmad, I., Ullah, W., Junaid, M. and Khan, S.A. (2022), "Uniform large scale cohesionless soil sample preparation using mobile pluviator", Geomech. Eng., 28(5), 521-529. https://doi.org/10.12989/gae.2022.28.5.521.
- Jefferies, M. (1993), "Nor-Sand: a simple critical state model for sand", Geotechnique, 43(1), 91-103. https://doi.org/10.1680/geot.1993.43.1.91.
- Jefferies, M. and Been, K. (2015), Soil Liquefaction: A Critical State Approach (2nd ed.). Milton Park, Abingdon: CRC Press.
- Jefferies, M., Shuttle, D. and Been, K. (2015), "Principal stress rotation as cause of cyclic mobility", Geotech. Res., 2(2), 66-96. https://doi.org/10.1680/jgere.15.00002.
- Lee, J.S. and Santamarina, J.C. (2005), "Bender elements: performance and signal interpretation", J. Geotech. Geoenviron. Eng., 131(9), 1063-1070. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:9(1063).
- Mendoza, C. and Muniz de Farias, M. (2020), "Critical state model for structured soil", J. Rock Mech. Geotech. Eng., 12(3), 630-641. https://doi.org/10.1016/j.jrmge.2019.12.006.
- Miranda, L., Caldeira, L., Serra, J. and Gomes, R.C. (2020), "Dynamic behaviour of Tagus River sand including liquefaction", Bull. Earthq. Eng., 18(10), 4581-4604. https://doi.org/10.1007/s10518-020-00881-5.
- Molina-Gomez, F., Caicedo, B. and Viana da Fonseca, A. (2019), "Physical modelling of soil liquefaction in a novel micro shaking table", Geomech. Eng., 19(3), 229-240. https://doi.org/10.12989/gae.2019.19.3.229.
- Molina-Gomez, F. and Viana da Fonseca, A. (2021), "Key geomechanical properties of the historically liquefiable TP-Lisbon sand", Soils Found., 61(3), 836-856. https://doi.org/10.1016/j.sandf.2021.03.004.
- Molina-Gomez, F., Viana da Fonseca, A., Ferreira, C. and Caicedo, B. (2023), "Improvement of cyclic liquefaction resistance induced by partial saturation: An interpretation using wave-based approaches", Soil Dyn. Earthq. Eng., 167, 107819. https://doi.org/10.1016/j.soildyn.2023.107819.
- Molina-Gomez, F., Viana da Fonseca, A., Ferreira, C. and Camacho-Tauta, J. (2020), "Dynamic properties of two historically liquefiable sands in the Lisbon area", Soil Dyn. Earthq. Eng., 132, 106101. https://doi.org/10.1016/j.soildyn.2020.106101.
- Nieto-Leal, A. and Kaliakin, V.N. (2021), "Additional insight into generalized bounding surface model for saturated cohesive soils", Int. J. Geomech., 21(6). https://doi.org/10.1061/(ASCE)GM.1943-5622.0002012.
- Nova, R. (1982), "A constitutive model for soil under monotonic and cyclic loading", (Eds., G. Pande and O. Zienkiewicz), Soil Mechanics - Transient and Cyclic Loads, 343-373. Chichester, UK: Wiley.
- Nova, R. (1994), "Controllability of the incremental response of soil specimens subjected to arbitrary loading programmes", J. Mech. Behavior Mater., 5(2), 193-201. https://doi.org/10.1515/JMBM.1994.5.2.193.
- Petalas, A.L., Dafalias, Y.F. and Papadimitriou, A.G. (2020), "SANISAND-F: Sand constitutive model with evolving fabric anisotropy", Int. J. Solids Struct., 188-189, 12-31. https://doi.org/10.1016/j.ijsolstr.2019.09.005.
- Quinteros, V.S. and Carraro, J. A. H. (2023), "The initial fabric of undisturbed and reconstituted fluvial sand", Geotechnique, 73(1), 1-15. https://doi.org/10.1680/jgeot.20.P.121.
- Ramos, C., Viana da Fonseca, A. and Vaunat, J. (2015), "Modeling flow instability of an Algerian sand with the dilatancy rule in CASM", Geomech. Eng., 9(6), 729-742. https://doi.org/10.12989/gae.2015.9.6.729.
- Reid, D., Fourie, A., Ayala, J.L., Dickinson, S., Ochoa-Cornejo, F., Fanni, R. and Suazo, G. (2021). "Results of a critical state line testing round robin programme", Geotechnique, 71(7), 616-630. https://doi.org/10.1680/jgeot.19.p.373.
- Santamarina, J.C., Rinaldi, V.A., Fratta, D., Klein, K.A., Wang, Y.-H., Cho, G.C. and Cascante, G. (2005), "A survey of elastic and electromagnetic properties of near-surface soils", (Ed., D.K. Butler), Near-Surface Geophysics, 71-87. Society of Exploration Geophysicists. https://doi.org/10.1190/1.9781560801719.ch4
- Schofield, A.N. and Wroth, C.P. (1968), Critical State Soil Mechanics, 25, https://doi.org/10.1111/j.1475-2743.1987.tb00718.x.
- Shuttle, D. and Cunning, J. (2007), "Liquefaction potential of silts from CPTu", Can. Geotech. J., 44(1), 1-19. https://doi.org/10.1139/T06-086.
- Shuttle, D. and Jefferies, M. (2016), "Determining silt state from CPTu", Geotech. Res., 3(3), 90-118. https://doi.org/10.1680/jgere.16.00008.
- Soares, M. and Viana da Fonseca, A. (2016), "Factors affecting steady state locus in triaxial tests", Geotech. Test. J., 39(6), 20150228. https://doi.org/10.1520/GTJ20150228.
- Suwal, L.P. and Kuwano, R. (2013), "Statically and dynamically measured poisson's ratio of granular soils on triaxial laboratory specimens", Geotech. Test. J., 36(4), 20120108. https://doi.org/10.1520/GTJ20120108.
- Taiebat, M., Dafalias, Y.F., Taiebat, M. and Dafalias, Y.F. (2008), "SANISAND: Simple anisotropic sand plasticity model", Int. J. Numer. Anal. Method. Geomech., 32(8), 915-948. https://doi.org/10.1002/NAG.651.
- Verdugo, R. and Ishihara, K. (1996), "The steady state of sandy soils", Soils Found., 36(2), 81-91. https://doi.org/10.3208/sandf.36.2_81.
- Viana da Fonseca, A., Cordeiro, D. and Molina-Gomez, F. (2021), "Recommended procedures to assess critical state locus from triaxial tests in cohesionless remoulded samples", Geotechnics, 1(1), 95-127. https://doi.org/10.3390/GEOTECHNICS1010006.
- Viana da Fonseca, A., Cordeiro, D., Molina-Gomez, F., Besenzon, D., Fonseca, A. and Ferreira, C. (2022), "The mechanics of iron tailings from laboratory tests on reconstituted samples collected in post-mortem Dam I in Brumadinho", Soils Rocks, 45(2), 1-20. https://doi.org/10.28927/SR.2022.001122.
- Viana da Fonseca, A., Ferreira, C. and Fahey, M. (2009), "A framework interpreting bender element tests, combining time-domain and frequency-domain methods", Geotech. Test. J., 32(2), 100974. https://doi.org/10.1520/GTJ100974.
- Viana da Fonseca, A., Molina-Gomez, F. and Ferreira, C. (2023), "Liquefaction resistance of TP-Lisbon sand: a critical state interpretation using in situ and laboratory testing", Bull. Earthq. Eng., 21(2), 767-790. https://doi.org/10.1007/s10518-022-01577-8.
- Wichtmann, T., Fuentes, W. and Triantafyllidis, T. (2019), "Inspection of three sophisticated constitutive models based on monotonic and cyclic tests on fine sand: Hypoplasticity vs. Sanisand vs. ISA", Soil Dyn. Earthq. Eng., 124, 172-183. https://doi.org/10.1016/j.soildyn.2019.05.001.
- Wichtmann, T. and Triantafyllidis, T. (2010), "On the influence of the grain size distribution curve on P-wave velocity, constrained elastic modulus Mmax and Poisson's ratio of quartz sands", Soil Dyn. Earthq. Eng., 30(8), 757-766. https://doi.org/10.1016/j.soildyn.2010.03.006.
- Wood, D.M. (2004), Geotechnical Modelling (1st Ed.), Milton Park, Abingdon: CRC Press.
- Xu, L. and Coop, M.R. (2017). "The mechanics of a saturated silty loess with a transitional mode", Geotechnique, 67(7), 581-596. https://doi.org/10.1680/jgeot.16.P.128.
- Yang, Z., Elgamal, A. and Parra, E. (2003), "Computational model for cyclic mobility and associated shear deformation", J. Geotech. Geoenviron. Eng., 129(12), 1119-1127. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:12(1119).