과제정보
The authors would like to acknowledge the financial support provided by China University of Mining and Technology, Xuzhou, China.
참고문헌
- Abdulla, K.F., Cunningham, L.S. and Gillie, M. (2017), "Simulating masonry wall behaviour using a simplified micromodel approach", Eng. Struct., 151, 349-365. https://doi.org/10.1016/j.engstruct.2017.08.021
- Atkinson, J.H., Richardson, D. and Stallebrass, S.E. (1990), "Effect of recent stress history on the stiffness of over consolidated soil", Geotechnique, 40(4), 531-540. https://doi.org/10.1680/geot.1990.40.4.531.
- Basmaji, B., Deck, O. and Al Heib, M. (2019), "Analytical model to predict building deflections induced by ground movements", Eur. J. Environ. Civil Eng., 23(3), 409-431. https://doi.org/10.1080/19648189.2017.1282382.
- Bejarano-Urrego, L., Verstrynge, E., Giardina, G. and Van Balen, K. (2018), "Crack growth in masonry: Numerical analysis and sensitivity study for discrete and smeared crack modelling", Eng. Struct., 165, 471-485. https://doi.org/10.1016/j.engstruct.2018.03.030.
- Bolhassani, M., Hamid, A.A., Lau, A.C. and Moon, F. (2015), "Simplified micro modeling of partially grouted masonry assemblages", Constr. Build. Mater., 83, 159-173. https://doi.org/10.1016/j.conbuildmat. 2015.03.021.
- Chen, P., Wang, W.D. and Ding, J.F. (2013), "Design and application of synchronous construction of two neighboring deep excavations", Chinese J. Geotech. Eng., 35(2), 555-558.
- Dong, Y., Burd, H.J. and Houlsby, G.T. (2017), "Finite element study of deep excavation construction processes", Soils Found., 57(6), 965-979. https://doi.org/10.1016/j.sandf.2017.08.024.
- Ding, Z., Wei, X.J. and Wei, G. (2017), "Prediction methods on tunnel-excavation induced surface settlement around adjacent building", Geomech. Eng., 12(2), 185-195. https://doi.org/10.12989/gae.2017.12.2.185.
- El Sawwaf, M. and Nazir, A.K. (2012), "The effect of deep excavation-induced lateral soil movements on the behavior of strip footing supported on reinforced sand", J. Adv. Res., 3(4), 337-344. https://doi.org/10.1016/j.jare.2011.11.001.
- Ghahreman, B (2004), "Analysis of ground and building response around deep excavation in sand", Ph. D. Thesis, Department of civil eng., University of Illinois
- Giardina, G., Hendriks, M.A. and Rots, J.G. (2010), "Numerical analysis of tunnelling effects on masonry buildings: the influence of tunnel location on damage assessment", Adv. Mater. Res., 133, 289-294. https://doi.org/10.4028/www.scientific.net/AMR.133-134.289.
- Giardina, G., Marini, A., Hendriks, M.A., Rots, J.G., Rizzardini, F. and Giuriani, E. (2012), "Experimental analysis of a masonry facade subject to tunnelling-induced settlement", Eng. Struct., 45, 421-434. https://doi.org/10.1016/j.engstruct.2012.06.042.
- Giardina, G., Van de Graaf, A.V., Hendriks, M.A., Rots, J.G. and Marini, A. (2013), "Numerical analysis of a masonry facade subject to tunnelling-induced settlements", Eng. Struct., 54, 234-247. https://doi.org/10.1016/j.engstruct.2013.03.055.
- Giardina, G., Hendriks, M.A. and Rots, J.G. (2015), "Sensitivity study on tunnelling induced damage to a masonry facade", Eng. Struct., 89, 111-129. https://doi.org/10.1016/j.engstruct.2013.03.055.
- Gudehus, G. (1996), "A comprehensive constitutive equation for granular materials", Soils Found., 36(1), 1-12. https://doi.org/10.3208/sandf.36.1.
- Halim, D. and Wong, K.S. (2012), "Prediction of frame structure damage resulting from deep excavation", J. Geotech. Geoenviron. Eng., 138(12), 1530-1536. DOI:10.1061/(asce)gt.1943-5606.0000682.
- Hashemi, H., Naeimifar, I., Uromeihy, A. and Yasrobi, S. (2015), "Evaluation of rock nail wall performance in jointed rock using numerical method", Geotech. Geol. Eng., 33(3), 593-607. https://doi.org/10.1007/s10706-015-9842-3.
- Herle, I. and Gudehus, G. (1999), "Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies", Mechanics of Cohesive-frictional Materials: An International Journal on Experiments, Modelling and Computation of Materials and Structures, 4(5), 461-486. https://doi.org/10.1002/(sici)10991484(199909)4:5%3C461::aid-cfm71%3E3.0.co;2-p.
- Hibbitt, Karlsson, Sorensen, (2010), Abaqus user's manual, version 6.10.2. Hibbitt, Karlsson & Sorensen Inc;, Providence, RI, USA.
- Hong, Y. and Ng, C.W. (2013), "Base stability of multi-propped excavations in soft clay subjected to hydraulic uplift", Can. Geotech. J., 50(2), 153-164. https://doi.org/10.1139/cgj-2012-0170
- Hong, Y., Koo, C.H., Zhou, C., Ng, C.W. and Wang, L.Z. (2017), "Small strain path-dependent stiffness of Toyoura sand: Laboratory measurement and numerical implementation", Int. J. Geomech., 17(1), 04016036. https://doi.org/10.1061/(asce)gm.1943-5622.0000664.
- Hsiung, B.C.B. (2009), "A case study on the behaviour of a deep excavation in sand", Comput. Geotech., 36(4), 665-675. https://doi.org/10.1016/j.compgeo.2008.10.003.
- Jamil, I. and Ahmad, I. (2019), "Bending moments in raft of a piled raft system using Winkler analysis", Geomech. Eng., 18(1), 41-48. https://doi.org/10.12989/gae.2019.18.1.041.
- Jaky J. (1944), "The coefficient of earth pressure at rest", J. Soc. Hungarian Arch. Eng., 355-358. [in Hungarian].
- Karira, H., Kumar, A., Ali, T.H., Mangnejo, D.A. and Mangi, N. (2022), "A parametric study of settlement and load transfer mechanism of piled raft due to adjacent excavation using 3D finite element analysis", Geomech. Eng., 30(2), 169-185. https://doi.org/10.12989/gae.2022.30.2.169.
- Lasciarrea, W.G., Amorosi, A., Boldini, D., de Felice, G. and Malena, M. (2019), "Jointed masonry model: A constitutive law for 3D soil-structure interaction analysis", Eng. Struct., 201, 109803. https://doi.org/10.1016/j.engstruct.2019.109803.
- Lin, H.D., Truong, H.M., Dang, H.P. and Chen, C.C. (2014), "Assessment of 3D excavation and adjacent building's reponses with consideration of excavation-structure interaction", Tunn. Undergr. Constr., 256-265. https://doi.org/10.1061/9780784413449.026.
- Lee, S.W. (2019), "Experimental study on effect of underground excavation distance on the behavior of retaining wall", Geomech. Eng., 17(5), 413-420. https://doi.org/10.12989/gae.2019.17.5.413
- Maeda, K. and Miura, K. (1999), "Relative density dependency of mechanical properties of sands", Soils Found., 39(1), 69-79. https://doi.org/10.3208/sandf.39.69.
- Mu, L., Huang, M., Roodi, G.H. and Shi, Z. (2021), "Allowable wall deflection of braced excavation adjacent to pile-supported buildings", Geomech. Eng., 26(2), 161-173. https://doi.org/10.12989/gae.2021.26.2.161.
- Minh TH (2013), "Study of excavation behavior and adjacent building response with 3D simulation", Doctoral dissertation, Master dissertation, National Taiwan University of Science and Technology.
- Naeimifar, I., Yasrobi, S., Golshani, A.A. and Joneidi, M. (2021), "Damage estimation in masonry buildings based on excavation-induced ground movements", Geotech. Geol. Eng., 1-21. https://doi.org/10.1007/s10706-021-01757-4.
- Nela, B. and Grajcevci, F. (2019), "Numerical approach: fem testing of masonry specimens with different bond configurations of units", Proceedings of the Congresso de Metodos Numericos em Engenharia1-3 julho 2019, Guimaraes, Portugal Universidade do Minho, 1-17.
- Niemunis, A. and Herle, I. (1997), "Hypoplastic model for cohesionless soils with elastic strain range", Mechanics of Cohesive-frictional Materials: An International Journal on Experiments, Modelling and Computation of Materials and Structures, 2(4), 279-299. https://doi.org/10.1002/(SICI)1099-1484(199710)2:4<279::AID-CFM29>3.0.CO;2-8.
- Ng, C.W.W., Hong, Y., Liu, G.B. and Liu, T. (2012), "Ground deformations and soil-structure interaction of a multi-propped excavation in Shanghai soft clays", Geotechnique, 62(10), 907-921. https://doi.org/10:1680/geot.10.P.072. 10:1680/geot.10.P.072
- Orazalin, Z.Y., Whittle, A.J. and Olsen, M.B. (2015), "Three-dimensional analyses of excavation support system for the Stata Center basement on the MIT campus", J. Geotech. Geoenviron. Eng., 141(7), 05015001. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001326.
- Ou, C.Y., Liao, J.T. and Cheng, W.L. (2000), "Building response and ground movements induced by a deep excavation", Geotechnique, 50(3), 209-220. https://doi.org/10.1680/geot.2000.50.3.209.
- Qian, J., Tong, Y., Mu, L., Lu, Q. and Zhao, H. (2020), "A displacement controlled method for evaluating ground settlement induced by excavation in clay", Geomech. Eng., 20(4), 275-285. https://doi.org/10.12989/gae.2020.20.4.275.
- Ruan, H.T., Zhao, J.H., Huang, W.D. and Liu, L. (2010), "Design and analysis of concurrent excavation of adjacent deep foundation pits", Chinese J. Geotech.Eng., 32, 249-254.
- Schuster, M., Kung, G.T.C., Juang, C.H. and Hashash, Y.M. (2009), "Simplified model for evaluating damage potential of buildings adjacent to a braced excavation", J. Geotech. Geoenviron. Eng., 135(12), 1823-1835. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000161
- Shen, J. (2012), "Analyses and countermeasures on interaction among large-scale group excavation projects", Chinese J. Geotech. Eng., 34, 272-276
- Shi, J., Liu, G., Huang, P. and Ng, C.W.W. (2015), "Interaction between a large-scale triangular excavation and adjacent structures in Shanghai soft clay", Tunn. Undergr. Sp. Tech., 50, 282-295. https://doi.org/10.1016/j.tust.2015.07.013.
- Shi, J., Fu, Z. and Guo, W. (2019a), "Investigation of geometric effects on three-dimensional tunnel deformation mechanisms due to basement excavation", Comput. Geotech., 106, 108-116. https://doi.org/10.1016/j.compgeo.2018.10.019.
- Shi, J., Wei, J., Ng, C.W. and Lu, H. (2019b), "Stress transfer mechanisms and settlement of a floating pile due to adjacent multi-propped deep excavation in dry sand", Comput. Geotech., 116, 103216. https://doi.org/10.1016/j.compgeo.2019.103216.
- Shi, J., Ding, C., Ng, C.W.W., Lu, H. and Chen, L. (2020), "Effects of overconsolidation ratio on tunnel responses due to overlying basement excavation in clay", Tunn. Undergr. Sp. Tech., 97, 103247. https://doi.org/10.1016/j.tust.2019.103247.
- Son, M. and Cording, E.J. (2005), "Estimation of building damage due to excavation-induced ground movements", J. Geotech. Geoenviron. Eng., 131(2), 162-177. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:2(162).
- Son, M. and Cording, E.J. (2008), "Numerical model tests of building response to excavation-induced ground movements", Can. Geotech. J., 45(11), 1611-1621. https://doi.org/10.1139/T08-074.
- Son, M. and Cording, E.J. (2011), "Responses of buildings with different structural types to excavation-induced ground settlements", J. Geotech. Geoenviron. Eng., 137(4), 323-333. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000448.
- Soomro, M.A., Mangi, N., Memon, A.H. and Mangnejo, D.A. (2022), "Responses of high-rise building resting on piled raft to adjacent tunnel at different depths relative to piles", Geomech. Eng., 29(1), 25-40. https://doi.org/10.12989/gae.2022.29.1.025.
- Wu, S.Y., Yang, X.P. and Liu, T.J. (2012), "Analysis of influence on deformation of adjacent subway tunnel due to bilateral deep excavations", Chinese J. Rock Mech. Eng,, 31, 3452-3458.
- Zhang, Q.B., He, L. and Zhu, W.S. (2016), "Displacement measurement techniques and numerical verification in 3D geomechanical model tests of an underground cavern group", Tunn. Undergr. Sp. Tech., 56, 54-64. https://doi.org/10.1016/j.tust.2016.01.029.