DOI QR코드

DOI QR Code

Life cycle reliability analyses of deteriorated RC Bridge under corrosion effects

  • 투고 : 2022.12.09
  • 심사 : 2023.06.28
  • 발행 : 2023.07.25

초록

Life-cycle performance analysis of a reinforced concrete box section bridge was generated. Moreover, Monte Carlo simulation with important sampling (IS) was used to simulate the bridge material and load uncertainties. The bridge deterioration model was generated with the basic probabilistic principles and updated according to the measurement data. A genetic algorithm (GA) with the response surface model (RSM) was used to determine the deterioration rate. The importance of health monitoring systems to sustain the bridge to give services economically and reliably and the advantages of fiber-optic sensors for SHM applications were discussed in detail. This study showed that the most effective loss of strength in reinforced concrete box section bridges is corrosion of the reinforcements. Due to reinforcement corrosion, the use of the bridge, which was examined, could not meet the desired strength performance in 25 years, and the need for reinforcement. In addition, it has been determined that long-term health monitoring systems are an essential approach for bridges to provide safe and economical service. Moreover the use of fiber optic sensors has many advantages because of the ability of the sensors to be resistant to environmental conditions and to make sensitive measurements.

키워드

참고문헌

  1. Alpaslan, E., Haciefendioglu, K., Demir, G. and Birinci, F. (2020), "Response surface-based finite-element model updating of a historic masonry minaret for operational modal analysis", Struct. Des. Tall Spec. Build., 29(9), 1-15. https://doi.org/10.1002/tal.1733.
  2. Alpaslan, E. and Karacaa, Z. (2021), "Response surface-based model updating to detect damage on reduced-scale masonry arch bridge", Struct. Eng. Mech., 79(1), 9-22. https://doi.org/10.12989/sem.2021.79.1.009.
  3. Apostolopoulos, C.A. and Papadakis, V.G. (2008), "Consequences of steel corrosion on the ductility properties of reinforcement bar", Constr. Build. Mater., 22, 2316-2324. https://doi.org/10.1016/j.conbuildmat.2007.10.006.
  4. ASCE (2021), Report Card for American's Infrastructure, The American Society of Civil Engineers, Reston, VA, USA.
  5. Barbosa, C., Costa, N., Ferreira, L.A., Araujo, F.M., Varum, H., Costa, A., Fernandes, C. and Rodrigues, H. (2008), "Weldable fibre Bragg grating sensors for steel bridge monitoring", Measure. Sci. Technol., 19(12), 125305. https://doi.org/10.1088/0957-0233/19/12/125305.
  6. Biondini, F., Bontempi, F., Frangopol, D.M. and Malerba, P.G. (2006), "Probabilistic service life assessment and maintenance planning of concrete structures", J. Struct. Eng., 132(5), 810-825. https://doi.org/10.1061/(ASCE)0733- 9445(2006)132:5(810).
  7. Biondini, F., Bontempi, F., Frangopol, D. and Malerba, P.G. (2004), "Cellular automata approach to durability analysis of concrete structures in aggressive environments", J. Struct. Eng., 130(11), 1724-1737. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:11(1724).
  8. Biondini, F., Camnasio, E. and Palermo, A. (2014), "Lifetime seismic performance of concrete bridges exposed to corrosion", Struct. Infrastruct. Eng., 10(7), 880-900. https://doi.org/10.1080/15732479.2012.761248.
  9. Biondini, F. and Frangopol, D.M. (2016), "Life-cycle performance of deteriorating structural systems under uncertainty: Review", J. Struct. Eng., 142(9), 1-17. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001544.
  10. Biondini, F. and Vergani, M. (2015), "Deteriorating beam finite element for nonlinear analysis of concrete structures under corrosion", Struct. Infrastruct. Eng., 11(4), 519-532. https://doi.org/10.1080/15732479.2014.951863.
  11. Bucher, C.G. and Bourgund, U. (1990), "A fast and efficient response surface approach for structural reliability problems", Struct. Saf., 7(1), 57-66. https://doi.org/10.1016/0167-4730(90)90012-E.
  12. Capacci, L., Biondini, F. and Titi, A. (2020), "Lifetime seismic resilience of aging bridges and road networks", Struct. Infrastruct. Eng., 16(2), 266-286. https://doi.org/10.1080/15732479.2019.1653937.
  13. Casas, J.R. and Cruz, P.J.S. (2003), "Fiber optic sensors for bridge monitoring", J. Bridge Eng., 8(6), 362-373. https://doi.org/10.1061/(ASCE)1084-0702(2003)8:6(362).
  14. Chakraborty, S. and Sen, A. (2014), "Adaptive response surface based efficient finite element model updating", Finite Elem. Anal. Des., 80, 33-40. https://doi.org/10.1016/j.finel.2013.11.002.
  15. Cheng, J., Zhang, J., Cai, C.S. and Xiao, R.C. (2007), "A new approach for solving inverse reliability problems with implicit response functions", Eng. Struct., 29(1), 71-79. https://doi.org/10.1016/j.engstruct.2006.04.005.
  16. Das, P.K. and Zheng, Y. (2000), "Cumulative formation of response surface and its use in reliability analysis", Probabilistic Eng. Mech., 15(4), 309-315. https://doi.org/10.1016/S0266-8920(99)00030-2.
  17. Deng, L. and Cai, C.S. (2010), "Bridge model updating using response surface method", J. Bridge Eng., 15(5), 553-564. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000092.
  18. Ellingwood, B.R. (2005), "Risk-informed condition assessment of civil infrastructure: State of practice and research issues", Struct. Infrastruct. Eng., 1(1), 7-18. https://doi.org/10.1080/15732470412331289341.
  19. Fang, S.E., Ren, W.X. and Perera, R. (2012), "A stochastic model updating method for parameter variability quantification based on response surface models and Monte Carlo simulation", Mech. Syst. Signal Pr., 33, 83-96. https://doi.org/10.1016/j.ymssp.2012.06.028.
  20. Frangopol, B.D.M., Kong, J.S. and Gharaibeh, E.S. (2001), "Reliability based life cycle management of highway bridges", J. Comput. Civil Eng., 15, 27-34. https://doi.org/10.1061/(ASCE)0887-3801(2001)15:1(27).
  21. Frangopol, D.M. (2011), "Life-cycle performance, management, and optimisation of structural systems under uncertainty: Accomplishments and challenges", Struct. Infrastruct. Eng., 7(6), 389-413. https://doi.org/10.1080/15732471003594427.
  22. Ghosh, J. and Padgett, J.E. (2012), "Impact of multiple component deterioration and exposure conditions on seismic vulnerability of concrete bridges", Earthq. Struct., 3(5), 649-673. https://doi.org/10.12989/eas.2012.3.5.649.
  23. Goulet, J., Der Kiureghian, A. and Li, B. (2015), "Pre-posterior optimization of sequence of measurement and intervention actions under structural reliability constraint", Struct. Saf., 52, 1-9. https://doi.org/10.1016/j.strusafe.2014.08.001.
  24. Granata, R.D., Wilson, J.C. and Fisher, J.W. (1996), "Assessing corrosion on steel structures using corrosion coulometer", J. Infrastruct. Syst., 2(3), 139-144. https://doi.org/10.1061/(ASCE)1076-0342(1996)2:3(139).
  25. Heitner, B., Obrien, E.J., Talamas, T., Schoefs, F., Leahy, C. and Decatorie, R. (2019), "Updating probabilities of bridge reinforcement corrosion using health monitoring data", Eng. Struct., 190, 41-51. https://doi.org/10.1016/j.engstruct.2019.03.103.
  26. Inaudi, D. and Glisic, B. (2008), "Overview of fibre optic sensing applications to structural health monitoring", Thirteenth FIG Symposium on Deformation Measurement and Analysis, Lisbon, Portugal, May.
  27. Inaudi, D., Phipps, A., French, C., Anthony, I.S. and Bridge, F. (2009), "Structural health monitoring system for the new i-35w st Anthony falls bridge structural health monitoring system for the new", 4th International Conference on Structural Health Monitoring on Intelligent Infrastructure, Zurich, Switzerland, July.
  28. Inaudi, D., Rufenacht, A., Von Arx, B., Noher, H.P., Vurpillot, S. and Glisic, B. (2002), "Monitoring of a concrete arch bridge during construction", Smart Structures and Materials 2002: Smart Systems for Bridges, Structures, and Highways, San Diego, CA, USA, June.
  29. Jaishi, B. and Ren, W. (2005), "Structural finite element model updating using ambient vibration test results", J. Struct. Eng., 131(4), 617-628. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:4(617).
  30. Kanchanadevi, A. and Ramanjaneyulu, K. (2019), "Investigations on the behaviour of corrosion damaged gravity load designed beam-column sub-assemblages under reverse cyclic loading", Earthq. Struct., 16(2), 235-251. https://doi.org/10.12989/eas.2019.16.2.235.
  31. Kapteyn, M.G., Knezevic, D.J., Huynh, D.B.P., Tran, M. and Willcox, K.E. (2022), "Data-driven physics-based digital twins via a library of component-based reduced-order models", Int. J. Numer. Method. Eng., 123(13), 2986-3003. https://doi.org/10.1002/nme.6423.
  32. Kim, S. and Frangopol, D.M. (2011), "Cost-effective lifetime structural health monitoring based on availability", J. Struct. Eng., 137(1), 22-33. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000280.
  33. Li, H.N., Li, D.S. and Song, G.B. (2004), "Recent applications of fiber optic sensors to health monitoring in civil engineering", Eng. Struct., 26(11), 1647-1657. https://doi.org/10.1016/j.engstruct.2004.05.018.
  34. Lopez-Higuera, J.M., Cobo, L.R., Incera, A.Q. and Cobo, A. (2011), "Fiber optic sensors in structural health monitoring", J. Lightwave Technol., 29(4), 587-608. https://doi.org/10.1109/JLT.2011.2106479.
  35. Lu, R. and Judd, J. (2022), "Field-deployable fiber optic sensor system for structural health monitoring of steel girder highway bridges", Infrastruct., 7(2), 1-15. https://doi.org/10.3390/infrastructures7020016.
  36. Matta, F., Bastianini, F., Galati, N., Casadei, P., Nanni, A. and Asce, F. (2008), "Distributed strain measurement in steel bridge with fiber optic sensors: Validation through diagnostic load test", J. Perform. Constr. Facil., 22(4), 264-273. https://doi.org/10.1061/(ASCE)0887-3828(2008)22:4(264).
  37. Naus, D.J., Oland, C.B., Ellingwood, B.R., Hookham, C.J. and Graves, H.L. (1999), "Summary and conclusions of a program addressing aging of nuclear power plant concrete structures", Nucl. Eng. Des., 194, 73-96. https://doi.org/10.1016/S0029-5493(99)00170-3.
  38. Okasha, N.M. and Frangopol, D.M. (2012), "Automated finite element updating using strain data for the lifetime reliability assessment of bridges", Reliab. Eng. Syst. Saf., 99, 139-150. https://doi.org/10.1016/j.ress.2011.11.007.
  39. Okasha, N.M. and Frangopol, D.M. (2012), "Integration of structural health monitoring in a system performance based lifecycle bridge management framework", Struct. Infrastruct. Eng., 8(11), 999-1016. https://doi.org/10.1080/15732479.2010.485726.
  40. PEER (2005), Open System for Earthquake Engineering Simulation (OpenSees), Consulte a l'adresse, http://opensees.berkeley.edu
  41. Phares, B., Lu, P., Wipf, T., Greimann, L. and Seo, J. (2013), "Field validation of a statistical-based bridge damage-detection algorithm", J. Bridge Eng., 18(11), 1227-1238. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000467.
  42. Ren, W.X. and Chen, H.B. (2010), "Finite element model updating in structural dynamics by using the response surface method", Eng. Struct., 32(8), 2455-2465. https://doi.org/10.1016/j.engstruct.2010.04.019.
  43. Shan, D., Li, Q., Khan, I. and Zhou, X. (2015), "A novel finite element model updating method based on substructure and response surface model", Eng. Struct., 103, 147-156. https://doi.org/10.1016/j.engstruct.2015.09.006.
  44. Taylor, P., Ang, A. and De Leon, D. (2005), "Modeling and analysis of uncertainties for risk-informed decisions in infrastructures engineering", Struct. Infrastruct. Eng., 1(1), 19-31. https://doi.org/10.1080/15732470412331289350.
  45. Tennyson, R.C., Mufti, A.A., Rizkalla, S., Tadros, G. and Benmokrane, B. (2001), "Structural health monitoring of innovative bridges in Canada with fiber optic sensors", Smart Struct. Mater., 10, 560-573. https://doi.org/10.1088/0964-1726/10/3/320.
  46. Titi, A. and Biondini, F. (2016), "On the accuracy of diffusion models for life-cycle assessment of concrete structures", Struct. Infrastruct. Eng., 12(9), 1202-1215. https://doi.org/10.1080/15732479.2015.1099110.
  47. Vaezi, H., Karimi, A., Shayanfar, M. and Safiey, A. (2021), "Seismic performance of low-rise reinforced concrete moment frames under carbonation corrosion", Earthq. Struct., 20(2), 215-224. https://doi.org/10.12989/eas.2020.20.2.215.
  48. Vurpillot, S., Casanova, N., Inaudi, D. and Kronenberg, P. (2016), "Bridge spatial displacement monitoring with 100 fiber optic sensors deformations : Sensors network and preliminary results", Int. Soc. Opt. Photo., 3043, 51-57.
  49. Webb, G.T., Vardanega, P.J., Hoult, N.A., Fidler, P.R.A., Bennett, P.J. and Middleton, C.R. (2017), "Analysis of fiber-optic strain-monitoring data from a prestressed concrete bridge", J. Bridge Eng., 22(5), 05017002. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000996.
  50. Xu, J.G., Feng, D.C., Mangalathu, S. and Jeon, J.S. (2022), "Data-driven rapid damage evaluation for life-cycle seismic assessment of regional reinforced concrete bridges", Earthq. Eng. Struct. Dyn., 51(11), 2730-2751. https://doi.org/10.1002/eqe.3699.
  51. Yilmaz, M.F. (2021), "Reliability analysis of bridge with montecarlo simulation", International Congress on the Phenomenological Aspects of Civil Engineering, Erzurum, Turkey, June.
  52. Zhang, B., Benmokrane, B., Nicole, J. and Masmoudi, R. (2002), "Evaluation of fibre optic sensors for structural condition monitoring", Mater. Struct., 35, 357-364. https://doi.org/10.1007/BF02483155.
  53. Zheng, Y. and Das, P.K. (2000), "Improved response surface method and its application to stiffened plate reliability analysis", Eng. Struct., 22(5), 544-551. https://doi.org/10.1016/S0141-0296(98)00136-9.
  54. Zhu, B. and Frangopol, D.M. (2013), "Incorporation of structural health monitoring data on load effects in the reliability and redundancy assessment of ship cross-sections using Bayesian updating", Struct. Health Monit., 12(4), 377-392. https://doi.org/10.1177/1475921713495082.