DOI QR코드

DOI QR Code

Improvement of hysteretic constitutive model for reinforcements considering buckling

  • Weng Weipeng (College of Civil Engineering and Architecture, Zhejiang University) ;
  • Xie Xu (College of Civil Engineering and Architecture, Zhejiang University) ;
  • Wang Tianjia (College of Civil Engineering and Architecture, Zhejiang University) ;
  • Li Shuailing (College of Civil Engineering and Architecture, Zhejiang University)
  • 투고 : 2022.11.14
  • 심사 : 2023.06.23
  • 발행 : 2023.07.25

초록

The buckling of longitudinal reinforcements under seismic loading accelerates the degradation of the bearing capacity of reinforced concrete columns. The traditional hysteretic constitutive model of reinforcement, which does not consider buckling, usually overestimates the seismic performance of pier columns. Subsequent researchers have also proposed many models including the buckling effects. However, the accuracy of these hysteretic constitutive models proposed for simulating the buckling behavior is inadequate. In this study, based on their works, the influence of historical events on buckling is considered, the path of the re-tensioning phase is corrected by adjusting the boundary lines, and the positions of the onset buckling point and compressive buckling path during each buckling deformation are corrected by introducing correction parameters and a boundary line. A modified hysteretic constitutive model is obtained, that can more accurately reflect the buckling behavior of reinforcements. Finally, a series of hysteresis tests of reinforcements with different slenderness ratios were then conducted. The experimental results verify the effectiveness of the proposed modified model. Indicating that the modified model can more accurately simulate the equivalent stress-strain relationship of the buckling reinforcement segment.

키워드

참고문헌

  1. Akkaya, Y., Guner, S. and Vecchio, F.J. (2019), "Constitutive model for inelastic buckling behavior of reinforcing bars", ACI Struct. J., 116(2), 195-210. https://doi.org/10.14359/51711143.
  2. Balan, T.A., Filippou, F.C. and Popov, E.P. (1998), "Hysteretic model of ordinary and high-strength reinforcing steel", J. Struct. Eng. ASCE, 124, 288-297. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:3(288).
  3. Bae, S., Mieses, A. and Bayrak, O. (2005), "Inelastic buckling of reinforcing bars", J. Struct. Eng. ASCE, 131(2), 314-321. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:2(314).
  4. Chang, G.A. and Mander, J.B. (1994), Seismic Energy Based Fatigue Damage Analysis of Bridge Columns: Part I-Evaluation of Seismic Capacity, National Center for Earthquake Engineering Research, Buffalo, NY, USA.
  5. Chen, Z. and Xu, R. (2022), "Experimental and numeral investigation on self-compacting concrete column with CFRP-PVC spiral reinforcement", Earthq. Struct., 22(1), 39-51. https://doi.org/10.12989/eas.2022.22.1.039.
  6. Ciampi, V., Eligehausen, R., Bertero, V.V. and Popov, E.P. (1982), Analytical Model for Concrete Anchorages of Reinforcing Bars Under Generalized Excitations, College of Engineering, University of California, Berkeley, CA, USA.
  7. Cosenza, E., De Cicco, F. and Prota, A. (2010), "Discussion of "Nonlinear uniaxial material model for reinforcing steel bars" by Sashi K. Kunnath, YeongAe Heo, and Jon F. Mohle", J. Struct. Eng., 136(7), 917-918. https://doi.org/10.1061/(asce)st.1943-541x.0000119.
  8. Dafalias, Y.F. and Popov, E.P. (1976), "Plastic interval variables formalism of cyclic plasticity", J. Appl. Mech., 43(4), 645-651. https://doi.org/10.1115/1.3423948.
  9. Dhakal, R.P. and Maekawa, K. (2002), "Path-dependent cyclic stress-strain relationship of reinforcing bar including buckling", Eng. Struct., 24(11), 1383-1396. https://doi.org/10.1016/s0141-0296(02)00080-9.
  10. Dodd, L.L. and Restrepo-Posada, J.I. (1995), "Model for predicting cyclic behavior of reinforcing steel", J. Struct. Eng. ASCE, 121, 433-445. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:3(433).
  11. Filippou, F.C., Popov, E.P. and Bertero, V.V. (1983), "Effects of bond deterioration on hysteretic behavior of reinforced concrete joints", Report No. UCB/EERC-83/19, Earthquake Engineering Research Center, University of California at Berkeley, Berkeley, CA, USA.
  12. Gomes, A. and Appleton, J. (1997) "Nonlinear cyclic stress-strain relationship of reinforcing bars including buckling", Eng. Struct., 19(10), 822-826. https://doi.org/10.1016/S0141-0296(97)00166-1.
  13. Krieg, R.D. (1975), "A practical two surface plasticity theory", J. Appl. Mech., 42(3), 641-646. https://doi.org/doi.org/10.1115/1.3423656.
  14. Kunnath, S.K., Heo, Y. and Mohle, J.F. (2009), "Nonlinear uniaxial material model for reinforcing steel bars", J. Struct. Eng., 135(4), 335-343. https://doi.org/10.1061/(asce)0733-9445(2009)135:4(335).
  15. Lei, Y. (2018), "Research on steel hysteresis constitutive model and structural seismic response", Ph.D. Thesis, Zhejiang University, China. (in Chinese)
  16. Lu, J., Chen, X., Ding, M., Zhang, X., Liu, Z. and Yuan, H. (2019), "Experimental and numerical investigation of the seismic performance of railway piers with increasing longitudinal steel in plastic hinge area", Earthq. Struct., 17(6), 545-556. https://doi.org/10.12989/eas.2019.17.6.545.
  17. Mander, J.B., Priestley, M.J.N. and Park, R. (1984), "Seismic design of bridge piers", Research Report 84-2, Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand.
  18. Massone, L.M. and Herrera, P.A. (2019) "Experimental study of the residual fatigue life of reinforcement bars damaged by an earthquake", Mater. Struct., 52(3), 1-11. https://doi.org/10.1617/s11527-019-1361-x.
  19. Mazzoni, S., McKenna, F., Scott, M.H. and Fenves, G.L. (2011), "Open system for earthquake engineering simulation users command-language manual", University of California, Berkeley, CA, USA.
  20. Menegotto, M. and Pinto, P.E. (1973), "Method of analysis of cyclically loaded RC plane frames including changes in geometry and non-elastic behavior of elements under normal force and bending", Proceedings of IABSE Symposium on Resistance and Ultimate Deformability of Structures Acted on by Well Defined Repeated Loads, Zurich, Switzerland.
  21. Mroz, Z. (1969), "An attempt to describe the behavior of metal under cyclic loads using a more general work hardening model", Acta Mech., 7(2-3), 199-212. https://doi.org/10.1007/BF01176668.
  22. Monti, G. and Nuti, C. (1992), "Nonlinear cyclic behavior of reinforcing bars including buckling", J. Struct. Eng., 118(12), 3268-3284. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:12(3268).
  23. Moyer, M.J. and Kowalsky, M.J. (2003), "Influence of tension strain on buckling of reinforcement in concrete columns", ACI Struct. J., 100(1), 75-85. https://doi.org/10.1016/j.engstruct.2015.09.007.
  24. Sato, Y.C. and Ko, H.B. (2007), "Experimental investigation of conditions of lateral shear reinforcements in RC columns accompanied by buckling of longitudinal bars", Earthq. Eng. Struct. Dyn., 36(12), 1685-1699. https://doi.org/10.1002/eqe.712.
  25. Su, J., Dhakal, R.P. and Wang, J. (2017), "Fiber-based damage analysis of reinforced concrete bridge piers", Soil Dyn. Earthq. Eng., 96, 13-34. https://doi.org/10.1016/j.soildyn.2017.01.029.
  26. Su, J., Li, Z., Wang, J. and Dhakal, R.P. (2020), "Numerical simulation and damage analysis of RC bridge piers reinforced with varying yield strength steel reinforcement", Soil Dyn. Earthq. Eng., 130, 106007. https://doi.org/10.1016/j.soildyn.2019.106007.
  27. Wang, T., Xie, X., Shen, C. and Tang, Z. (2016), "Effect of hysteretic constitutive models on elasto-plastic seismic performance evaluation of steel arch bridges", Earthq. Struct., 10(5), 1089-1109. https://doi.org/10.12989/eas.2016.10.5.1089.
  28. Wu, D., Ding, Y., Su, J., Li, Z.X. and Zong, L. (2022), "Investigation on low-cycle fatigue performance of high-strength steel bars including the effect of inelastic buckling", Eng. Struct., 272, 114974. https://doi.org/10.1016/j.engstruct.2022.114974.
  29. Yang, H., Wu, Y., Mo, P. and Chen, J. (2016), "Improved nonlinear cyclic stress-strain model for reinforcing bars including buckling effect and experimental verification", Int. J. Struct. Stab. Dyn., 16(1), 623-632. https://doi.org/10.1142/S0219455416400058.
  30. Yang, H., Xie, Q., Zhang, J. and Fu, J. (2015), "A modified constitutive model of reinforcing bars considering buckling effects and its experimental verification", China Civil Eng. J., 48(10), 21-29. https://doi.org/CNKI:SUN:TMGC.0.2015-10-005. (in Chinese) 10-005
  31. Yang, H., Zhang, L. and Zhang, H. (2013), "Experiments and nonlinear analysis on seismic behavior of RC columns considering buckling and fatigue damage of reinforcing steel bar", J. Build. Struct., 34(11), 130-140. https://doi.org/10.14006/j.jzjgxb.2013.11.018. (in Chinese)
  32. Zong, Z. (2010), "Uniaxial material model incorporating buckling for reinforcing bars in concrete structures subjected to seismic loads", MSc Thesis, University of California, Davis, CA, USA.