DOI QR코드

DOI QR Code

Performance of reinforced concrete moment resisting frames in Sarpol-e Zahab earthquake (November 12, 2017, Mw=7.3), Iran

  • Received : 2022.12.12
  • Accepted : 2023.06.12
  • Published : 2023.07.25

Abstract

Reinforced concrete (RC) moment frames are used as lateral seismic load resisting systems in mid- and high-rise buildings in different regions of the world. Based on the seismic design provisions and construction details presented in design codes, RC frames with different levels of ductility (ordinary, intermediate, and special) can be designed and constructed. In Iran, there are RC buildings with various uses which have been constructed based on different editions of design codes. The seismic performance of RC structures (particularly moment frames) in real seismic events is of great importance. In this paper, the observations made on damaged RC moment frames after the destructive Sarpol-e Zahab earthquake with a moment magnitude of 7.3 are reported. Different levels of damage from the development of cracks in the structural and non-structural elements to the total collapse of buildings were observed. Furthermore, undesirable failure modes which are not expected in ductile seismic-resistant buildings were frequently observed in the damaged buildings. The RC moment frames built based on the previous editions of the design codes showed partial or total collapse in this seismic event. The extensive destruction of RC moment frames compared with the other structural systems (such as braced steel frames and confined masonry buildings) was attributed not only to the deficiencies in the construction practice of these buildings but also to the design procedure. In addition, the failure and collapse of masonry infills in RC moment frames were frequent modes of failure in this seismic event. In this paper, the main reasons related to design practice which led to extensive damage in the RC moment frames and their collapse are addressed.

Keywords

References

  1. Agnihotri, P., Singhal, V. and Rai, P.C. (2013), "Effect of in-plane damage on out-of-plane strength of unreinforced masonry walls", Eng. Struct., 57, 1-11. https://doi.org/10.1016/j.engstruct.2013.09.004.
  2. Anic, F., Penava, D., Abrahamczyk, L. and Sarhosis, V. (2020), "A review of experimental and analytical studies on the out-of-plane behaviour of masonry infilled frames", Bull. Earthq. Eng., 18, 2191-2246. https://doi.org/10.1007/s10518-019-00771-5.
  3. Arteta, C.A., Carrillo, J. and Archbold, J. (2019). "Response of mid-rise reinforced concrete frame buildings to the 2017 Puebla earthquake", Earthq. Spec., 35(4), 1763-1793. https://doi.org/10.1193/061218EQS144M.
  4. Askar, M.K., Hassan, A.F. and Al-Kamaki, Y.S.S. (2022), "Flexural and shear strengthening of reinforced concrete beams using FRP composites: A state of the art", Case Stud. Constr. Mater., 17, e01189. https://doi.org/10.1016/j.cscm.2022.e01189.
  5. Babaie Mahani, A.R. and Kazemian, J. (2018), "Strong ground motion from the November 12, 2017, M 7.3 Kermanshah earthquake in western Iran", J. Seismol., 22, 1339-1358. https://doi.org/10.1007/s10950-018-9761-x.
  6. Bayraktar, A., Altunisik, A.C., Turker, T. and Karadeniz. H. (2015), "Structural performance evaluation of 90 RC buildings collapsed during the 2011 Van, Turkey, earthquakes", J. Perform. Constr. Facil., 29(6), 04013001. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000524.
  7. Belal, M.F., Mohamed, H.M. and Morad, S.A. (2015), "Behavior of reinforced concrete columns strengthened by steel jacket", HBRC J., 11(2), 201-212. https://doi.org/10.1016/j.hbrcj.2014.05.002.
  8. Berry, M.P. and Eberhard. M.O. (2005), "Practical performance model for bar buckling", J. Struct. Eng., 131(7), 04013001. https://doi.org/10.1061/(ASCE)07339445(2005)131:7(1060).
  9. Dimitrios, A. and Tsonos, G. (2010), "Performance enhancement of R/C building columns and beam-column joints through shotcrete jacketing", Eng. Struct., 32(3), 726-740. https://doi.org/10.1016/j.engstruct.2009.12.001.
  10. Favvata, M.J., Naoum, M.C. and Karayannis, C.G. (2013), "Limit states of RC structures with first floor irregularities", Struct. Eng. Mech., 47(6), 791-818. https://doi.org/10.12989/sem.2013.47.6.791.
  11. Feng, D. and Xu, J. (2018), "An efficient fiber beam-column element considering flexure-shear interaction and anchorage bond-slip effect for cyclic analysis of RC structures", Bull. Earthq. Eng., 16, 5425-5452. https://doi.org/ 10.1007/s10518-018-0392-y.
  12. Fu, L., Nakamura, H., Furuhashi, H., Yamamoto, Y. and Miura, T. (2017), "Mechanism of shear strength degradation of a reinforced concrete column subjected to cyclic loading", Struct. Concrete, 18(1), 177-188. https://doi.org/10.1002/suco.201600052.
  13. Galvis, F.A., Miranda, E. and Heresi, P. (2020), "Overview of collapsed buildings in Mexico City after the 19 September 2017 (Mw7.1) earthquake", Earthq. Spec., 36(2), https://doi.org/10.1177/8755293020936694.
  14. Gautam, D. and Chaulagain, H. (2016), "Structural performance and associated lessons to be learned from world earthquakes in Nepal after 25 April 2015 (MW 7.8) Gorkha earthquake", Eng. Fail. Anal., 68, 222-243. https://doi.org/10.1016/j.engfailanal.2016.06.002.
  15. Ghaffarzadeh, H., Talebian, N. and Kohandel, R. (2013), "Seismic demand evaluation of medium ductility RC moment frames using nonlinear procedures", Earthq. Eng. Eng. Vib., 12, 399-409. https://doi.org/10.1007/s11803-013-0181-1.
  16. Haroon, M., Shin, D., Lee, J. and Kim, C. (2020), "Deformability of reinforced concrete columns failing in shear after flexural reinforcement yielding", ACI Struct. J., 117(3), 71-90. https://doi.org/10.14359/51721377.
  17. Hassan, W.M. and Moehle, J.P. (2018), "Shear strength of exterior and corner beam-column joints without transverse reinforcement", ACI Struct. J., 127, 719-727. https://doi.org/10.14359/51702416.
  18. Hong, S., Lee, J., Choi, Y. and Gu, I. (2021), "Seismic strengthening of concrete columns by ultrahigh-performance fiber-reinforced concrete jacketing", J. Struct. Eng. (ASCE), 147(10), 04021157. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003111.
  19. Hua, J., Eberhard, M.O., Lowes, L.N. and Gu, X. (2019), "Modes, mechanisms, and likelihood of seismic shear failure in rectangular reinforced concrete columns", J. Struct. Eng. (ASCE), 145(10), 04019096. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002365.
  20. Huang, H., Hao, R., Zhang, W. and Huang, M. (2019), "Experimental study on seismic performance of square RC columns subjected to combined loadings", Eng. Struct., 184, 194-204. https://doi.org/10.1016/j.engstruct.2019.01.095.
  21. Huang, X. and Kwon, O. (2015), "Numerical models of RC elements and their impacts on seismic performance assessment", Earthq. Eng. Struct. Dyn., 44(2), 283-298. https://doi.org/10.1002/eqe.2471.
  22. Irtem, E., Turker, K. and Hasguul, U. (2007), "Causes of collapse and damage to low rise RC buildings in recent Turkish earthquakes", J. Perform. Constr. Facil., 21(5), 04013001. https://doi.org/10.1061/(ASCE)0887-3828(2007)21:5(351).
  23. Kalantari, A., Hosseini Hashemi, B., ASarvghad Moghadam, A., Mansouri, B. and Farshchi, H.R. (2019), "Buildings damage data collection after 2017 Sarpol-e Zahab earthquake", Proceedings of the 8th Internaitonal Conference of Seismology and Earthquake Engineering, Tehran, Iran, November.
  24. Karayannis, C.G., Golias, E. and Kalogeropoulos, G.I. (2022), "Influence of carbon fiber-reinforced ropes applied as external diagonal reinforcement on the shear deformation of RC joints", Fib., 10(3), 28. https://doi.org/10.3390/fib10030028.
  25. Karayannis, C.G. and Naoum, M.C. (2018), "Torsional behavior of multistory RC frame structures due to asymmetric seismic interaction", Eng. Struct., 163, 93-111. https://doi.org/10.1016/j.engstruct.2018.02.038.
  26. Kim, J. and LaFave, J.M. (2007), "Key influence parameters for the joint shear behaviour of reinforced concrete (RC) beam-column connections", Eng. Struct., 29(10), 2523-2539. https://doi.org/10.1016/j.engstruct.2006.12.012.
  27. Li, R. and Pourzanhani, M. (1999), "Sensitivity of building response to nonlinear analysis models", Struct. Des. Tall Build., 8, 15-35. https://doi.org/10.1002/(SICI)1099-1794(199903)8:1<15::AID-TAL120>3.0.CO;2-8
  28. Lima, K., Martinelli, E. and Faella, C. (2012), "Capacity models for shear strength of exterior joints in RC frames: State-of-the-art and synoptic examination", Bull. Earthq. Eng., 10, 967-983. https://doi.org/10.1007/s10518-012-9340-4.
  29. Lu, Y., Xiong, F., Ran, M., Ge, Q. and Wang, J. (2022), "Seismic pounding damage to adjacent reinforced concrete frame-shear wall buildings and freestanding contents", Earthq. Eng. Struct. Dyn., 51(6), 1436-1456. https://doi.org/10.1002/eqe.362.
  30. Mo, Y.L. and Wang. J. (2000), "Seismic behavior of RC columns with various tie configurations", J. Struct. Eng., 126(10), 04013001. https://doi.org/10.1061/(ASCE)07339445(2000)126:10(1122).
  31. Moehle, J.P., and Mahin S.A. 1991. "Observations on the Behavior of Reinforced Concrete Buildings During Earthquakes", ACI structural Journal, 127, 67-90.
  32. Moosavi, M., Ashayeri, I., Haghshenas, E., Biglari, M., Kamalian, M. and Jalili, J. (2019), "Strong motion records in Sarpol-e-Zahab earthquake", J. Seismol. Earthq. Eng., 20(2), 11-19.
  33. Najafgholipour, M.A. and Arabi, A.R. (2019), "A nonlinear model to apply beam-column joint shear failure in analysis of RC moment resisting frames", Struct., 22, 13-27. https://doi.org/10.1016/j.istruc.2019.07.011.
  34. Najafgholipour, M.A., Dehghan, S.M., Khani, M. and Heidari, A. (2018), "The performance of lap splices in RC beams under inelastic reversed cyclic loading", Struct., 15, 279-291. https://doi.org/10.1016/j.istruc.2018.07.011.
  35. Naserieh, S., Ghofrani, H., Shoja-Taheri, J., Dezvareh, M. and Mirzaei Alavijeh, H. (2020), "Strong ground-motion characteristics observed in the November 12, 2017, Mw7.3 Sarpol-e Zahab, Iran earthquake", J. Earthq. Eng., 26(7), 3488-3505. https://doi.org/10.1080/13632469.2020.1806950.
  36. Nasiri, E. and Liu, Y. (2020), "Effect of prior in-plane damage on the out-of-plane performance of concrete masonry infills", Eng. Struct., 222, 111149. https://doi.org/10.1016/j.engstruct.2020.111149.
  37. NBC-9 (National Building Code, Discussion 9) (2020), Design and Construction of Reinforced Concrete Buildings, 5th Edition. Road, Housing and Urban Development Research Center, Tehran, Iran.
  38. Opabola, E.A., Elwood, K.J. and Pujol, S. (2021), "Influence of biaxial lateral loading on seismic response of reinforced concrete columns", ACI Struct. J., 117(6), 211-224. https://doi.org/10.14359/51728069.
  39. Oyguc, R., Toros, C. and Abdelnaby, A.E. (2018), "Seismic behavior of irregular reinforced-concrete structures under multiple earthquake excitation", Soil Dyn. Earthq. Eng., 104, 15-32. https://doi.org/10.1016/j.soildyn.2017.10.002.
  40. Panchal, V.R. and Sangid, R.S. (2009), "Seismic response of structures with variable friction pendulum system", J. Earthq. Eng., 13(2), 193-216. https://doi.org/10.1080/13632460802597786.
  41. Parate, K. and Kumar, R. (2018), "Shear strength criteria for design of RC beam-column joints in building codes", Bull. Earthq. Eng., 17, 1407-1493. https://doi.org/10.1007/s10518-018-0492-8.
  42. Patel, C.C. and Jangid, R.S. (2011), "Dynamic response of adjacent structures connected by friction damper", Earthq. Struct., 2(2), 149-169. https://doi.org/10.12989/eas.2011.2.2.149.
  43. Pourmohammad Shahvar, M, Eshaghi, A., Farzanegan, E. and Mirzaei Alavijeh, H. (2018), "Strong motion records in Sarpole-Zahab earthquake", J. Seismol. Earthq. Eng., 2, 11-19.
  44. Ruiz-Pinilla, J.G., Adam, J.M., Perez-Carcel, R., Yuste, J. and Moraguez, J.J. (2016), "Learning from RC building structures damaged by the earthquake in Lorca, Spain, in 2011", Eng. Fail. Anal., 68, 76-86. https://doi.org/10.1016/j.engfailanal.2016.05.013.
  45. Shafaei, J., Hosseini, A. and Marefat, M.S. (2014), "Shake table tests on a non-seismically detailed RC frame structure", Eng. Struct., 81, 265-288. https://doi.org/10.1016/j.engstruct.2014.10.006.
  46. Sharma, A., Reddy, G.R. and Vaze, K.K. (2012), "Shake table tests on a non-seismically detailed RC frame structure", Struct. Eng. Mech., 41(1), 1-24. https://doi.org/10.12989/sem.2012.41.1.001.
  47. Sonpal, A., Kumar, M. and Sarma, H. (2019), "Effect of gap between column and masonry infill on the response of masonry-infilled reinforced concrete frames", Proceedings of 13th North American Masonry Conference, Salt Lake City, UT, USA, June.
  48. Surana, M., Singh, Y. and Lang, D.H. (2018), "Effect of strong-column weak-beam design provision on the seismic fragility of RC frame buildings", Int. J. Adv. Struct. Eng., 10, 131-141. https://doi.org/10.1007/s40091-018-0187-z.
  49. Standard 2800 (2014), Iranian Code of Practice for Seismic Resistant Buildings, 4th Edition. Road, Housing and Urban Development Research Center, Tehran, Iran.
  50. Tasligedik, A.S., Pampanin, S. and Palermo, A. (2011), "Damage mitigation strategies of 'non-structural' infill walls: Concept and numerical-experimental validation program", Proceedings of e Ninth Pacific Conference on Earthquake Engineering Building an Earthquake-Resilient Society, Auckland, New Zealand, April.
  51. Tsonos, A.G. (2014), "Seismic retrofit of exterior RC beam-column joint using diagonal haunch", Struct. Monit. Mainten., 1(3), 323-338. https://doi.org/ 10.12989/smm.2014.1.3.323.
  52. Zabihi, A., Tsang, H., Gad, E.F. and Wilson, J.L. (2018), "Seismic retrofit of exterior RC beam-column joint using diagonal haunch", Eng. Struct., 174, 753-767. https://doi.org/10.1016/j.engstruct.2018.07.100.
  53. Zhang, H., Kuang, J.S. and Yuen, T.Y.P. (2017), "Low-seismic damage strategies for infilled RC frames: shake-table tests", Earthq. Eng. Struct. Dyn., 46(14), 2419-2438. https://doi.org/10.1002/eqe.2911.
  54. Zhang, C. and Tao, M. (2021), "Strong-column-weak-beam criterion for reinforced concrete frames subjected to biaxial seismic excitation", Eng. Struct., 241, 112481. https://doi.org/10.1016/j.engstruct.2021.112481.