DOI QR코드

DOI QR Code

Experimental analysis of blast loading effects on security check-post

  • Muhammed Rizvan Akram (Department of Civil Engineering, Gebze Technical University) ;
  • Ali Yesilyurt (Department of Earthquake Engineering, Istanbul Technical University)
  • Received : 2021.10.21
  • Accepted : 2023.07.06
  • Published : 2023.08.10

Abstract

Concrete construction, one of the oldest building practices, is commonly used in all parts of the world. Concrete is the primary building material for both residential and commercial constructions. The challenge of protecting the buildings, hence nation, against the attack of terrorism has raised the importance to explore the understanding of building materials against the explosion. In this research, a security check-post (reinforced concrete frame filled with plain cement concrete) has been chosen to study the behavior of structural elements under blast loading. Eight nitroglycerines-based dynamite blasts with varying amounts of explosive charge, up to 17 kg weight has been carried out at various scale distances. Pressure and acceleration time history records are measured using blast measuring instruments. Security check post after being exposed by explosive loading are photographed to view cracking/failure patterns on the structural elements. It is noted that with the increase of quantity of explosive, the dimensions of spalling and crack patterns increase on the front panels. Simple empirical analyses are conducted using ConWep and other design manuals such as UFC 3-340-02 (2008) and AASTP-1 (2010) for the purpose of comparison of blast parameters with the experimental records. The results of experimental workings are also compared with earlier researchers to check the compatibility of developed equations. It is believed that the current study presents the simple and preliminary procedure for calculating the air blast and ground shock parameters on the structures exposed to blast explosion.

Keywords

Acknowledgement

The author would like to acknowledge the University of Engineering and Technology (UET) Taxila and National Engineering and Scientific Commission (NESCOM), for using their research laboratories, equipment and their guidance and valuable input in carrying out this research work.

References

  1. AASTP-1 (2010), Manual of NATO Safety Principles for the Storage of Military Ammunition and Explosives.
  2. Adeel, M. (2010), "Blast loading effect on high strength reinforced concrete structure", M.T Thesis, University of Engineering and Technology, Taxila.
  3. Ahmad, S., Elahi, A., Iqbal, J., Keyani, M.A. and Rahman, A.G.A. (2013), "Impulsive loading on reinforced concrete wall", Proc. Inst. Civil Eng.-Struct. Build., 166(3), 153-162. https://doi.org/10.1680/stbu.11.00008.
  4. Brode, H.L. (1955), "Numerical solutions of spherical blast waves", J. Appl. Phys., 26(6), 766-775. https://doi.org/10.1063/1.1722085.
  5. Codina, R. and Ambrosini, D. (2018), "Full-scale testing of leakage of blast waves inside a partially vented room exposed to external air blast loading", Shock Wave., 28(2), 227-241. https://doi.org/10.1007/s00193-017-0733-9.
  6. ConWep, (1991), Conventional Weapons Calculations Software based on TM 5-855-1, U.S.A.E.W, Station, 3909 Halls Ferry Road, Vicksburg, MS 39180.
  7. Formby, S.A. and Wharton, R.K. (1996), "Blast characteristics and TNT equivalence values for some commercial explosives detonated at ground level", J. Hazard. Mater., 50(2-3), 183-198. https://doi.org/10.1016/0304-3894(96)01791-8.
  8. Henrych, J. and Major, R. (1979), The Dynamics of Explosion and its Use, Vol. 569, Elsevier, Amsterdam.
  9. Huma (2015), "Blast loading effects on PCC walls", Msc Thesis, University of Engineering and Technology, Taxila.
  10. ISO-16933, Hazard Rating Criteria According to ISO 16933. Review Report of Testing Method-Resistance of Structures to Explosion Methods, 40-41.
  11. Jacinto, A.C., Ambrosini, R.D. and Danesi, R.F. (2001), "Experimental and computational analysis of plates under air blast loading", Int. J. Impact Eng., 25(10), 927-947. https://doi.org/10.1016/S0734-743X(01)00031-8.
  12. Jayasooriya, R., Thambiratnam, D.P., Perera, N.J. and Kosse, V. (2011), "Blast and residual capacity analysis of reinforced concrete framed buildings", Eng. Struct., 33(12), 3483-3495. https://doi.org/10.1016/j.engstruct.2011.07.011.
  13. Lan, S., Lok, T.S. and Heng, L. (2005), "Composite structural panels subjected to explosive loading", Constr. Build. Mater., 19(5), 387-395. https://doi.org/10.1016/j.conbuildmat.2004.07.021.
  14. Leppanen, J. (2005), "Experiments and numerical analyses of blast and fragment impacts on concrete", Int. J. Impact Eng., 31(7), 843-860. https://doi.org/10.1016/j.ijimpeng.2004.04.012.
  15. Liu, H. (2009), "Dynamic analysis of subway structures under blast loading", Geotech. Geolog. Eng., 27(6), 699. https://doi.org/10.1007/s10706-009-9269-9.
  16. Luccioni, B.M. and Luege, M. (2006), "Concrete pavement slab under blast loads", Int. J. Impact Eng., 32(8), 1248-1266. https://doi.org/10.1016/j.ijimpeng.2004.09.005.
  17. McVay, M.K. (1988), Spall Damage of Concrete Structures, ARMY Engineer Waterways Experiment Station Vicksburg MS Structures LAB.
  18. Mehwish, T. (2011), "Effects of blast loading parameters on analysis & design of structural elements", Msc Thesis, University of Engineering and Technology, Taxila.
  19. Nguyen, T.P. and Tran, M.T. (2011), "Response of vertical wall structures under blast loading by dynamic analysis", Procedia Eng., 14, 3308-3316. https://doi.org/10.1016/j.proeng.2011.07.418.
  20. Ousji, H., Belkassem, B., Louar, M.A., Kakogiannis, D., Reymen, B., Pyl, L. and Vantomme, J. (2016), "Parametric study of an explosive-driven shock tube as blast loading tool", Exper. Techniq., 40(4), 1307-1325. https://doi.org/10.1007/s40799-016-0128-3.
  21. Razaqpur, A.G., Tolba, A. and Contestabile, E. (2007), "Blast loading response of reinforced concrete panels reinforced with externally bonded GFRP laminates", Compos. Part B: Eng., 38(5-6), 535-546. https://doi.org/10.1016/j.compositesb.2006.06.016.
  22. Schenker, A., Anteby, I., Gal, E., Kivity, Y., Nizri, E., Sadot, O. and Ben-Dor, G. (2008), "Full-scale field tests of concrete slabs subjected to blast loads", Int. J. Impact Eng., 35(3), 184-198. https://doi.org/10.1016/j.ijimpeng.2006.12.008.
  23. Siddiqui, J.I. and Ahmad, S. (2007), "Impulsive loading on a concrete structure", Proc. Inst. Civil Eng.-Struct. Build., 160(4), 231-241. https://doi.org/10.1680/stbu.2007.160.4.231.
  24. UFC 3-340-02 (2008), Structures to Resist the Effects of Accidental Explosions, U.S. Army Corps of Engineers.
  25. UFC 4-010-01 (2002), Dod Minimum Anti-Terrorism Standards for Buildings, The DoD Unified Facility Criteria (UFC), 4-6.
  26. Wei, X. and Stewart, M.G. (2010), "Model validation and parametric study on the blast response of unreinforced brick masonry walls", Int. J. Impact Eng., 37(11), 1150-1159. https://doi.org/10.1016/j.ijimpeng.2010.04.003.
  27. Wu, C. and Hao, H. (2005), "Modeling of simultaneous ground shock and airblast pressure on nearby structures from surface explosions", Int. J. Impact Eng., 31(6), 699-717. https://doi.org/10.1016/j.ijimpeng.2004.03.002.
  28. Yuan, L., Gong, S. and Jin, W. (2008), "Spallation mechanism of RC slabs under contact detonation", Trans. Tianjin Univ., 14(6), 464. https://doi.org/10.1007/s12209-008-0079-6.
  29. Yusof, M.A., Mohamad Nor, N., Ismail, A., Mohd Sohaimi, R., Nik Daud, N.G., Peng, N.C. and Fauzi, M.Z.M. (2010), "Field blast testing using high speed data acquisition system for hybrid steel fiber reinforced concrete panel", Eur. J. Sci. Res., 44(4), 585-595.