Acknowledgement
This study was financially supported by the National Key R&D Program of China (No. 2022YFB3706703), the National Natural Science Foundation of China (No. 52078134), the Postgraduate Research & Practice Innovation Program of the Jiangsu Province of China (No. KYCX22_0220), and the Research and Development Project of China Communications Construction (grant No. YSZX-02-2021-01-B), which are gratefully acknowledged.
References
- Andreu, A., Gil, L. and Roca, P. (2006), "A new deformable catenary element for the analysis of cable net structures", Comput. Struct., 84(29-30), 1882-1890. http://doi.org/10.1016/j.compstruc.2006.08.021.
- Cao, H.Y., Zhou, Y.L., Chen, Z.J. and Abdel Wahab, M. (2017), "Form-finding analysis of suspension bridges using an explicit Iterative approach", Struct. Eng. Mech., 62(1), 85-95. http://doi.org/10.12989/sem.2017.62.1.085.
- Chen, Z.J., Cao, H.Y., Ye, K., Zhu, H.P, and Li, S.F. (2015), "Improved particle swarm optimization-based form-finding method for suspension bridge installation analysis", J. Comput. Civil Eng., 29(3), 04014047. http://doi.org/10.1061/(ASCE)CP.1943-5487.0000354.
- Chen, Z.J., Cao, H.Y. and Zhu, H.P. (2013), "An iterative calculation method for suspension bridge,s cable system based on exact catenary theory", Balt. J. Road Bridge Eng., 8(3), 196-204. http://doi.org/10.3846/bjrbe.2013.25.
- Gil, H. and Choi, Y. (2001), "Cable erection test at pylon saddle for spatial suspension bridge", J. Bridge Eng., 6(3), 183-188. http://doi.org/10.1061/(ASCE)1084-0702(2001)6:3(183).
- Huang, P.M. and Li, C.J. (2023), "Review of the main cable shape control of the suspension bridge", Appl. Sci., 13(5), 3106. https://doi.org/10.3390/app13053106.
- Huang, Y. and Lan, W.R. (2006), "Static analysis of cable structure", Appl. Math. Mech., 27(10), 1425-1430. http://doi.org/CNKI:SUN:YYSL.0.2006-10-015. 10-015
- Irvine, H.M. (1975), "Statics of suspended cables", J. Eng. Mech. Div., 101(3), 187-205. http://doi.org/10.1016/S0022-460X(75)80142-8.
- Irvine, H.M. (1981), Cable Structures, MIT Press, Cambridge.
- Jung, M.R., Min, D.J. and Kim, M.Y. (2013), "Nonlinear analysis methods based on the unstrained element length for determining initial shaping of suspension bridges under dead loads", Comput. Struct., 128, 272-285. http://doi.org/10.1016/j.compstruc.2013.06.014.
- Jung, M.R., Min, D.J. and Kim, M.Y. (2015), "Simplified analytical method for optimized initial shape analysis of self-anchored suspension bridges and its verification", Math. Prob. Eng., 2015, Article ID 923508. http://doi.org/10.1155/2015/923508.
- Karoumi, R. (1999), "Some modeling aspects in the nonlinear finite element analysis of cable supported bridges", Comput. Struct., 71(4), 397-412. http://doi.org/10.1016/S0045-7949(98)00244-2.
- Kim, H.K., Lee, M.J. and Chang, S.P. (2002), "Non-linear shapefinding analysis of a self-anchored suspension bridge", Eng. Struct., 24(12), 1547-1559. http://doi.org/10.1016/S0141-0296(02)00097-4.
- Kim, H.K. and Kim, M.Y. (2012), "Efficient combination of a TCUD method and an initial force method for determining initial shapes of cable-supported bridges", Int. J. Steel Struct., 12(2), 157-174. http://doi.org/10.1007/s13296-012-2002-1.
- Kim, K.S. and Lee, H.S. (2001), "Analysis of target configurations under dead loads for cable-supported bridges", Comput. Struct., 79(29-30), 2681-2692. http://doi.org/10.1016/S0045-7949(01)00120-1.
- Kim, M.Y., Jung, M.R. and Attard, M.M. (2019), "Unstrained length-based methods determining an optimized initial shape of 3-dimensional self-anchored suspension bridges", Comput. Struct., 217, 18-35. https://doi.org/10.1016/j.compstruc.2019.03.008.
- Li, C., Li, Y. and He, J. (2019), "Experimental study on torsional behavior of spatial main cable for a self-anchored suspension bridge", Adv. Struct. Eng., 22(14), 3086-3099. http://doi.org/10.1177/1369433219857840.
- Li, C.X. (2014), Static Nonlinear Theory and Practice of Modern Suspension Bridge, China Comm Press Co, Ltd, Beijing. (in Chinese)
- Li, C.X., Ke, H.J., Liu, H.B. and Xia, G.Y. (2010), "Determination of finished bridge state of self-anchored suspension bridge with spatial cables", Eng. Mech., 27(5), 137-146. (in Chinese)
- Li, J.H., Feng, D.M., Li, A.Q. and Yuan, H.H. (2016), "Determination of reasonable finished state of self-anchored suspension bridges", J. Cent. South Univ., 23(1), 209-219. http://doi.org/10.1007/s11771-016-3064-6.
- Li, T. and Liu, Z. (2019), "A recursive algorithm for determining the profile of the spatial self-anchored suspension bridges", KSCE J. Civil Eng., 23(3), 1283-1292. http://doi.org/10.1007/s12205-019-0542-z.
- Li, T., Liu, Z. and Zhang, W.M. (2020), "Analysis of suspension bridges in construction and completed status considering the pylon saddles", Eur. J. Environ. Civil. Eng., 26(9), 4280-4295. https://doi.org/10.1080/19648189.2020.1848637.
- Luo, X.H., Xiao, R.C. and Xiang, H.F. (2004), "Cable shape analysis of suspension bridge with spatial cables", J. Tongji Univ., 32, 1349-1354. (in Chinese)
- Rezaiee-Pajand, M., Mokhtari, M. and Masoodi, A.R. (2018), "A novel cable element for nonlinear thermo-elastic analysis", Eng. Struct., 167, 431-444. http://doi.org/10.1016/j.engstruct.2018.04.022.
- Shen, R., Qi, D. and Tang, M. (2011), "Model test study of the static property of the jiangdong bridge in hangzhou", China Civil Eng. J., 44(1), 74-80. (in Chinese)
- Song, C.L., Xiao, R.C. and Sun, B. (2020), "Improved method for shape finding of long-span suspension bridges", Int. J. Steel Struct., 20(1), 247-258. http://doi.org/10.1007/s13296-019-00283-7.
- Such, M., Jimenez-Octavio, J.R., Carnicero, A. and Lopez-Garcia, O. (2009), "An approach based on the catenary equation to deal with static analysis of three dimensional cable structures", Eng. Struct., 31(9), 2162-2170. http://doi.org/10.1016/j.engstruct.2009.03.018.
- Sun, J., Manzanarez, R. and Nader, M. (2002), "Design of looping cable anchorage system for new San Francisco-Oakland Bay Bridge main suspension span", J. Bridge Eng., 7(6), 315-324. http://doi.org/10.1061/(ASCE)1084-0702(2002)7:6(315).
- Sun, Y., Zhu, H.P. and Xu, D. (2015), "New method for shape finding of self-anchored suspension bridges with three-dimensionally curved cables", J Bridge Eng., 20(2), 04014063. http://doi.org/10.1061/(ASCE)BE.1943-5592.0000642.
- Sun, Y., Zhu, H.P. and Xu, D. (2016), "A specific rod model based efficient analysis and design of hanger installation for self-anchored suspension bridges with 3d curved cables", Eng. Struct., 110, 184-208. http://doi.org/10.1016/j.engstruct.2015.11.040.
- Suzuki, Y., Miyata, E.S. and Iverson, S.C. (1996), "Static analyses of the triangular running skyline system: a three-dimensionally movable logging cable system", Comput. Struct., 60(4), 579-592. http://doi.org/10.1016/0045-7949(95)00426-2.
- Tang, M.L., Qiang, S.Z. and Shen, R.L. (2003), "Segmental catenary method of calculating the cable curve of suspension bridge", J. China Railw. Soc., 25(1), 87-91. (in Chinese)
- Wan, J.W., Wang, Q., Liao, H.L. and Li, M.S. (2017), "Study on aerodynamic coefficients and responses of the integrated catwalk of Halogaland Bridge", Wind Struct., 25(3), 215-232. http://doi.org/10.12989/was.2017.25.3.215.
- Wang, X.M., Frangopol, D.M., Dong, Y., Lei, X.M. and Zhang, Y.F. (2018), "Novel technique for configuration transformation of 3D curved cables of suspension bridges: Application to the Dongtiao River Bridge", J. Perform. Constr. Facil., 32(4), 04018045. http://doi.org/10.1061/(ASCE)CF.1943-5509.0001189.
- Wang, X.M., Wang, H., Zhang, J., Sun, Y., Bai, Y.T., Zhang, Y.F. and Wang, H.C. (2021), "Form-finding method for the target configuration under dead load of a new type of spatial self-anchored hybrid cable-stayed suspension bridges", Eng. Struct., 227, 111407. https://doi.org/10.1016/j.engstruct.2020.111407.
- Wei, J.D., Guan, M.Y., Cao, Q. and Wang, R.B. (2018), "Spatial combined cable element for cable-supported bridges", Eng. Comput., 36(1), 204-225. http://doi.org/10.1108/EC-05-2018-0243.
- Xiao, R.C., Chen, M.H. and Sun, B. (2017), "Determination of the reasonable state of suspension bridges with spatial cables", J. Bridge Eng., 22(9), 04017060. http://doi.org/10.1061/(ASCE)BE.1943-5592.0001106
- Yang, M.G., Chen, Z.Q. and Hua, X.G. (2010), "A new two-node catenary cable element for the geometrically non-linear analysis of cable-supported structures", Proc. Inst. Mech. Eng. Part C-J. Eng. Mech. Eng. Sci., 224(6), 1173-1183. http://doi.org/10.1243/09544062JMES1816.
- Zhang, J.P., Liu, A.R., Ma, Z.J., Huang, H.Y., Mei, L.B. and Li, Y.H. (2013), "Behavior of self-anchored suspension bridges in the structural system transformation", J. Bridge Eng., 18(8), 712-721. http://doi.org/10.1061/(ASCE)BE.1943-5592.0000422.
- Zhang, W.M., Shi, L.Y., Li, L. and Liu, Z. (2018), "Methods to correct unstrained hanger lengths and cable clamps, installation positions in suspension bridges", Eng. Struct., 171, 202-213. http://doi.org/10.1016/j.engstruct.2018.05.039.
- Zhang, W.M., Zhang, Z.H., Tian, G.M. and Chang, J.Q. (2023), "Determining the reasonable completed bridge state of a self-anchored suspension bridge with a spatial cable system based on minimum bending strain energy: An analytical algorithm", J. Bridge Eng., 28(5), 04023018. http://doi.org/10.1061/JBENF2.BEENG-5857.
- Zhang, Z.H., Zhang, J.Y., Hao, W.S., Dai, J.G. and Shen, Y. (2010), "Hangzhou Jiangdong Bridge designed as a spatial self-anchored suspension bridge, China", Struct. Eng. Int., 20(3), 303-307. http://doi.org/10.2749/101686610792016673.
- Zhou, G.P., Li, A.Q., Li, J.H., Duan, M.J., Xia, Z.Y., Zhu, L., Spencer, B.F. and Wang, B. (2019), "Test and numerical investigations on the spatial mechanics characteristics of extra-wide concrete self-anchored suspension bridge during construction", Int. J. Distrib. Sens. Netw., 15(12), 1550147719891561. http://doi.org/10.1177/1550147719891561.
- Zhu, W.L., Ge, Y.J., Fang, G.S. and Cao, J.X. (2021), "A novel shape finding method for the main cable of suspension bridge using nonlinear finite element approach", Appl. Sci., 11(10), 4644. https://doi.org/10.3390/app11104644.