DOI QR코드

DOI QR Code

A generalized ANFIS controller for vibration mitigation of uncertain building structure

  • Received : 2023.02.02
  • Accepted : 2023.06.28
  • Published : 2023.08.10

Abstract

A novel combinatorial type-2 adaptive neuro-fuzzy inference system (T2-ANFIS) and robust proportional integral derivative (PID) control framework for intelligent vibration mitigation of uncertain structural system is introduced. The fuzzy logic controllers (FLCs), are designed independently of the mathematical model of the system. The type-1 FLCs, have a limited ability to reduce the effect of uncertainty, due to their fuzzy sets with a crisp degree of membership. In real applications, the consequent part of the fuzzy rules is uncertain. The type-2 FLCs, are robust to the fuzzy rules and the process parameters due to the fuzzy degree of membership functions and footprint of uncertainty (FOU). The adaptivity of the proposed method is provided with the optimum tuning of the parameters using the neural network training algorithms. In our approach, the PID control force is obtained using the generalized type-2 neuro-fuzzy in such a way that the stability and robustness of the controller are guaranteed. The robust performance and stability of the presented framework are demonstrated in a numerical study for an eleven-story seismically-excited building structure combined with an active tuned mass damper (ATMD). The results indicate that the introduced type-2 neuro-fuzzy PID control scheme is effective to attenuate plant states in the presence of the structured and unstructured uncertainties, compared to the conventional, type-1 FLC, type-2 FLC, and type-1 neuro-fuzzy PID controllers.

Keywords

References

  1. Aguirre, N., Ikhouane, F. and Rodellar, J. (2011), "Proportional-plus-integral semiactive control using magnetorheological dampers", J. Sound Vib., 330(10), 2185-2200. https://doi.org/10.1016/j.jsv.2010.11.027.
  2. Al-Fahdawi, O.A. and Barroso, L.R. (2021), "Adaptive neuro-fuzzy and simple adaptive control methods for full three-dimensional coupled buildings subjected to bi-directional seismic excitations", Eng. Struct., 232, 111798. https://doi.org/10.1016/j.engstruct.2020.111798.
  3. Astrom, K.J., Hagglund, T. and Astrom, K.J. (2006), "Advanced PID control", Vol. 461, Research Triangle Park, NC: ISA-The Instrumentation, Systems, and Automation Society.
  4. Chen, P.C., Sugiarto, B.J and Chien, K.Y. (2021), "Performance-based optimization of LQR for active mass damper using symbiotic organisms search", Smart Struct. Syst., 27(4), 705-717. https://doi.org/10.12989/sss.2021.27.4.705.
  5. Fayaz, J. and Galasso, C. (2022), "A deep neural network framework for real-time on-site estimation of acceleration response spectra of seismic ground motions", Comput. Aid. Civil Infrastr. Eng., 38(1), 87-103. https://doi.org/10.1111/mice.12830.
  6. Guclu, R. and Yazici, H. (2007), "Fuzzy logic control of a nonlinear structural system against earthquake induced vibration", J. Vib. Control, 13(11), 1535-1551. https://doi.org/10.1177/1077546307077663.
  7. Heidari, A.H., Etedali, S. and Javaheri-Tafti, M.R. (2018), "A hybrid LQR-PID control design for seismic control of buildings equipped with ATMD", Front. Struct. Civil Eng., 12(1), 44-57. https://doi.org/10.1007/s11709-016-0382-6.
  8. Huo, L., Song, G., Li, H. and Grigoriadis, K. (2007), "Robust control design of active structural vibration suppression using an active mass damper", Smart Mater. Struct., 17(1), 015021. https://doi.org/10.1088/0964-1726/17/01/015021.
  9. Jamil, M., Khan, M.N., Rind, S.J., Awais, Q. and Uzair, M. (2021), "Neural network predictive control of vibrations in tall structure: An experimental controlled vision", Compu. Elec. Eng., 89, 106940. https://doi.org/10.1016/j.compeleceng.2020.106940.
  10. Katebi, J., Rad, A.B. and Zand, J.P. (2022), "A novel multi-feature model predictive control framework for seismically excited high-rise buildings", Struct. Eng. Mech., 83(4), 537-549. https://doi.org/10.12989/sem.2022.83.4.537.
  11. Kim, H.S. (2020), "Development of seismic response simulation model for building structures with semi-active control devices using recurrent neural network", Appl. Sci., 10(11), 3915. https://doi.org/10.3390/app10113915.
  12. Kostinakis, K.G. and Morfidis, K.E. (2020), "Optimization of the seismic performance of masonry infilled R/C buildings at the stage of design using artificial neural networks", Struct. Eng. Mech., 75(3), 295-309. https://doi.org/10.12989/sem.2020.75.3.295.
  13. Li, J., He, Z. and Zhao, X. (2021), "A data-driven building's seismic response estimation method using a deep convolutional neural network", IEEE Access, 9, 50061-50077. https://doi.org/10.1109/ACCESS.2021.3065837.
  14. Mendel, J., Hagras, H., Tan, W.W., Melek, W.W. and Ying, H. (2014), Introduction to Type-2 Fuzzy Logic Control: Theory and Applications, John Wiley & Sons.
  15. Ogata, K. and Yang, Y. (2002), Modern Control Engineering, Prentice Hall, India.
  16. Oh, B.K., Park, Y. and Park, H.S. (2020), "Seismic response prediction method for building structures using convolutional neural network", Struct. Control Hlth. Monit., 27(5), e2519. https://doi.org/10.1002/stc.2519.
  17. Paul, S., Yu, W. and Li, X. (2018), "Bidirectional active control of structures with type-2 fuzzy PD and PID", Int. J. Syst. Sci., 49(4), 766-782. https://doi.org/10.1080/00207721.2017.1421724.
  18. Peng, H., Li, F. and Kan, Z. (2020), "A novel distributed model predictive control method based on a sub structuring technique for smart tensegrity structure vibrations", J. Sound Vib., 471, 115171. https://doi.org/10.1016/j.jsv.2020.115171.
  19. Pnevmatikos, N.G. (2012), "New strategy for controlling structures collapse against earthquakes", Nat. Sci., 4(8A), 667-676. http://doi.org/10.4236/ns.2012.428088.
  20. Pnevmatikos, N.G. and Thomos, G.C. (2014), "Stochastic structural control under earthquake excitations", Struct. Control Hlth. Monit., 21(4), 620-633. https://doi.org/10.1002/stc.1589.
  21. Rad, A.B., Nouri, M., Katebi, J. and Ghasemi, S.A.M. (2021), "A developed model predictive control scheme for vibration attenuation of building structures", Smart Struct. Syst., 27(4), 691-703. https://doi.org/10.12989/sss.2021.27.4.691.
  22. Ramezani, M., Bathaei, A. and Zahrai, S.M. (2019), "Comparing fuzzy type-1 and-2 in semi-active control with TMD considering uncertainties", Smart Struct. Syst., 23(2), 155-171. https://doi.org/10.12989/sss.2019.23.2.155.
  23. Rayegani, A. and Nouri, G. (2020), "Application of smart dampers for prevention of seismic pounding in isolated structures subjected to near-fault earthquakes", J. Earthq. Eng., 26(8), 4069-4084. https://doi.org/10.1080/13632469.2020.1822230.
  24. Saeed, M.U., Sun, Z. and Elias, S. (2022), "Research developments in adaptive intelligent vibration control of smart civil structures", J. Low Freq. Noise, Vib. Act. Control, 41(1), 292-329. https://doi.org/10.1177/14613484211032758.
  25. Srokosz, P.E. and Baginska, M. (2020), "Application of adaptive neuro-fuzzy inference system for numerical interpretation of soil torsional shear test results", Adv. Eng. Softw., 143, 102793. https://doi.org/10.1177/14613484211032758.
  26. Ulusoy, S., Nigdeli, S.M. and Bekdas, G. (2021), "Novel metaheuristic-based tuning of PID controllers for seismic structures and verification of robustness", J. Build. Eng., 33, 101647. https://doi.org/10.1016/j.jobe.2020.101647.
  27. Yan, X., Xu, Z.D. and Shi, Q.X. (2020), "Fuzzy neural network control algorithm for asymmetric building structure with active tuned mass damper", J. Vib. Control, 26(21-22), 2037-2049. https://doi.org/10.1177/1077546320910003.
  28. Zadeh, L.A. (1975), "The concept of a linguistic variable and its application to approximate reasoning-I", Inform. Sci., 8(3), 199-249. https://doi.org/10.1016/0020-0255(75)90036-5.
  29. Zand, J.P., Sabouri, J., Katebi, J. and Nouri, M. (2021), "A new time-domain robust anti-windup PID control scheme for vibration suppression of building structure", Eng. Struct., 244, 112819. https://doi.org/10.1016/j.engstruct.2021.112819.
  30. Zhou, J., Li, C., Arslan, C.A., Hasanipanah, M. and Bakhshandeh Amnieh, H. (2019), "Performance evaluation of hybrid FFAANFIS and GA-ANFIS models to predict particle size distribution of a muck-pile after blasting", Eng. Comput., 37, 265-274. https://doi.org/10.1007/s00366-019-00822-0.
  31. Zhou, K., Doyle, J.C. and Glover, K. (1996), Robust and Optimal Control, Prentice Hall, New Jersey.