References
- Cheng, M., Firdausi, P.M. and Prayogo, D. (2014), "Engineering Applications of Artificial Intelligence High-performance concrete compressive strength prediction using Genetic Weighted Pyramid Operation Tree (GWPOT)", Eng. Appl. Artif. Intel., 29, 104-113. https://doi.org/10.1016/j.engappai.2013.11.014.
- Divyah, N., Prakash, R., Srividhya, S., Avudaiappan, S., Guindos, P., Carsalade, N.M., Arunachalam, KP.., Noroozinejad Farsangi, E. and Roco-Videla, A. (2023), "Experimental and numerical investigations of laced built-up lightweight concrete encased columns subjected to cyclic axial load", Build., 13(6), 1444. https://doi.org/10.3390/buildings13061444.
- El-Mir, A., El-Zahab, S., Sbartai, ZM., Homsi, F., Saliba, F. and El-Hassan, H. (2023), "Machine learning prediction of concrete compressive strength using rebound hammer test", J. Build. Eng., 64, 105538. https://doi.org/10.1016/j.jobe.2022.105538.
- Firouzi, A. and Rahai, A. (2012), "An integrated ANN-GA for reliability-based inspection of concrete bridge decks considering the extent of corrosion-induced cracks and life cycle costs", Scientia Iranica, 19(4), 974-981. https://doi.org/10.1016/j.scient.2012.06.002.
- Hidallana-Gamage, H.D., Thambiratnam, D.P. and Perera, N.J. (2014), "Numerical modeling and analysis of the blast performance of laminated glass panels and the influence of material parameters", Eng. Fail. Anal., 45, 65-84. https://doi.org/10.1016/j.engfailanal.2014.06.013.
- Hosan, A., Haque, S. and Shaikh, F. (2016), "Compressive behaviour of sodium and potassium activators synthetized fly ash geopolymer at elevated temperatures: A comparative study", J. Build. Eng., 8, 123-130. https://doi.org/10.1016/j.jobe.2016.10.005.
- Kandiri, A., Sartipi, F. and Kioumarsi, M. (2021), "Predicting compressive strength of concrete containing recycled aggregate using modified ANN with different optimization algorithms", Appl. Sci., 11(2), 485. https://doi.org/10.3390/app11020485.
- Kasperkiewicz, J., Racz, J. and Dubrawski, A. (1995), "HPC strength prediction using artificial neural network", J. Comput. Civil Eng., 9(4), 279-284. https://doi.org/10.1061/(ASCE)0887-3801(1995)9:4(279)
- Kovacevic, M., Lozancic, S., Nyarko, E.K. and Hadzima-Nyarko, M. (2022), "Application of artificial intelligence methods for predicting the compressive strength of self-compacting concrete with class F fly ash", Mater., 15(12), 4191. https://doi.org/10.3390/ma15124191.
- Li, D., Tang, Z., Kang, Q., Zhang, X. and Li, Y. (2023), "Machine learning-based method for predicting compressive strength of concrete", Proc., 11(2), 390. https://doi.org/10.3390/pr11020390.
- McKenna, S., Meyer, M., Gregg, C. and Gerber, S. (2016), "s-CorrPlot: An interactive scatterplot for exploring correlation", J. Comput. Graph. Stat., 25(2), 445-463. https://doi.org/10.1080/10618600.2015.1021926.
- Prakash, R., Divyah, N., Srividhya, S., Avudaiappan, S., Amran, M., Raman, S.N., Guindos, P., Vatin, N.I. and Fediuk, R. (2022), "Effect of steel fiber on the strength and flexural characteristics of coconut shell concrete partially blended with fly ash", Mater., 15(12), 4272. https://doi.org/10.3390/ma15124272.
- Prakash, R., Thenmozhi, R. and Raman, S. (2019), "Mechanical characterisation and flexural performance of eco-friendly concrete produced with fly ash as cement replacement and coconut shell coarse aggregate", Int. J. Environ. Sustain. Develop., 18(2), 131-148. https://doi.org/10.1504/ijesd.2019.099491.
- Prakash, R., Thenmozhi, R., Raman, S.N., Subramanian, C. and Divyah, N. (2021), "Mechanical characterization of sustainable fiber-reinforced lightweight concrete incorporating waste coconut shell as coarse aggregate and sisal fiber", Int. J. Environ. Sci. Technol., 18, 1579-1590. https://doi.org/10.1007/s13762-020-02900-z.
- Roehm, C., Sasmal, S., Novak, B. and Karusala, R. (2015), "Numerical simulation for seismic performance evaluation of fiber-reinforced concrete beam-column sub-assemblages", Eng. Struct., 91, 182-196. https://doi.org/10.1016/j.engstruct.2015.02.015.
- Sivakumar, S. and Kameshwari, B. (2016), "Arithmetical modelling for evaluating the performance of concrete strength with the aid of optimization techniques", Res. J. Appl. Sci., Eng. Technol., 12(6), 668-679. https://doi.org/10.19026/rjaset.12.2715.
- Tayfur, G., Erdem, T.K. and Kirca, O. (2014), "Strength prediction of high-strength concrete by fuzzy logic and artificial neural networks", J. Mater. Civil Eng., 26(11), 04014079. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000985.
- Yeh, I.C. (1998), "Modeling of strength of high-performance concrete using artificial neural networks", Cement Concrete Res., 28(12), 1797-1808. https://doi.org/10.1016/S0008-8846(98)00165-3.
- Yuan, Z., Wang, L.N. and Ji, X. (2014), "Prediction of concrete compressive strength: Research on hybrid models genetic-based algorithms and ANFIS", Adv. Eng. Softw., 67, 156-163. https://doi.org/10.1016/j.advengsoft.2013.09.004.
- Zhang, X., Dai, C., Li, W. and Chen, Y. (2023), "Prediction of compressive strength of recycled aggregate concrete using machine learning and Bayesian optimization methods", Front. Earth Sci., 11, 1112105. https://doi.org/10.3389/feart.2023.1112105.