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AUTHOR'S SUMMARY

There is limited evidence regarding machine-learning prediction for recurrence after electrical 
cardioversion (ECV) among patients with persistent atrial fibrillation (AF). We aimed to 
predict the recurrence after ECV in persistent AF with a machine-learning approach. Machine-
learning models were evaluated with various training datasets. Compared to the training 
of clinical features alone, that of electrocardiogram (ECG) features or both features showed 
significantly higher areas under the receiver operating characteristic curves (0.57 vs. 0.60 and 
0.63, respectively; both p<0.001). Machine learning of both clinical features and ECG showed a 
synergistic impact in predicting AF recurrence after ECV in persistent AF patients.

ABSTRACT

Background and Objectives: There is limited evidence regarding machine-learning 
prediction for the recurrence of atrial fibrillation (AF) after electrical cardioversion (ECV). 
This study aimed to predict the recurrence of AF after ECV using machine learning of clinical 
features and electrocardiograms (ECGs) in persistent AF patients.
Methods: We analyzed patients who underwent successful ECV for persistent AF. Machine 
learning was designed to predict patients with 1-month recurrence. Individual 12-lead ECGs 
were collected before and after ECV. Various clinical features were collected and trained 
the extreme gradient boost (XGBoost)-based model. Ten-fold cross-validation was used to 
evaluate the performance of the model. The performance was compared to the C-statistics of 
the selected clinical features.
Results: Among 718 patients (mean age 63.5±9.3 years, men 78.8%), AF recurred in 435 
(60.6%) patients after 1 month. With the XGBoost-based model, the areas under the receiver 
operating characteristic curves (AUROCs) were 0.57, 0.60, and 0.63 if the model was trained 
by clinical features, ECGs, and both (the final model), respectively. For the final model, the 
sensitivity, specificity, and F1-score were 84.7%, 28.2%, and 0.73, respectively. Although 
the AF duration showed the best predictive performance (AUROC, 0.58) among the clinical 
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features, it was significantly lower than that of the final machine-learning model (p<0.001). 
Additional training of extended monitoring data of 15-minute single-lead ECG and 
photoplethysmography in available patients (n=261) did not significantly improve the model’s 
performance.
Conclusions: Machine learning showed modest performance in predicting AF recurrence 
after ECV in persistent AF patients, warranting further validation studies.

Keywords: Atrial fibrillation; Electric countershock; Machine learning; Recurrence

INTRODUCTION

Electrical cardioversion (ECV) is a common strategy for restoring sinus rhythm in atrial 
fibrillation (AF). It is useful for treating highly symptomatic or hemodynamically unstable 
patients with AF. Although ECV has a high success rate (up to 90%) in restoring sinus rhythm 
from AF,1) a frequent recurrence rate has been regarded as one of its main limitations. The 
1-year recurrence rate of AF after ECV may range from 40% to 50% despite antiarrhythmic 
drug use.2-4) Additionally, especially for patients with persistent AF, ECV becomes less 
effective because AF triggers induce immediate recurrence of atrial fibrillation (IRAF).5) 
Therefore, predicting ineffective ECV among AF patients is crucial.

Accordingly, various predictors, including longer AF durations, older age,6) electrocardiogram 
(ECG)7) or echocardiography features,8) and serological biomarkers,9)10) have been suggested 
as potential predictors of AF recurrence after ECV. However, every predictor needs more 
predictive performance; thus, their clinical applicability remains limited.11) Recently, 
machine learning has been widely studied in cardiovascular medicine.12)13) It has an advantage 
in solving difficult classifications or predictions using nonlinear computations of given 
features, which remains limited in traditional statistical methods. Therefore, a machine-
learning approach might be necessary to improve predictive performance by analyzing 
multiple predictors.

In this study, we aimed to investigate the feasibility of a machine-learning approach to predict 
AF recurrence after ECV by using various clinical features and ECGs among patients with 
persistent AF.

METHODS

Study population and study outcome
This study used data from a registry of patients with AF who underwent ECV for persistent 
AF between 2010 to 2021. The enrollment flow is illustrated in Figure 1. From the registry, we 
excluded the following: 1) patients who failed to restore sinus rhythm on ECG or had IRAF; 
2) those who underwent ECV for conditions other than AF, such as atrial flutter or ventricular 
arrhythmia; 3) those who had missing data for any of the 12-lead ECGs before or after ECV; 
and 4) those who were lost-to-follow-up at 1 month. Finally, a total of 718 patients was 
included in this study. The study outcome was defined as AF recurrence at 1 month following 
a successful electrical cardioversion. AF recurrence was determined based on documented 
episodes of AF from a 12-lead ECG or ambulatory Holter test conducted at 30±7 days after the 
successful electrical cardioversion.
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Data acquisition and dataset construction
To predict 1-month recurrence after ECV, we collected all available clinical features, 
including demographic information, blood tests, ECG features, echocardiographic features, 
comorbidities, concomitant medications, and detailed information on AF history; a complete 
list of features is presented in Supplementary Table 1. Among the initially collected features, 
those with missing values in >30% of the study population were excluded. We then performed 
a univariate logistic regression analysis for each feature to predict a 1-month recurrence and 
excluded those with a p value >0.90 from machine learning; they were regarded as irrelevant in 
predicting the recurrence. Finally, eight clinical features, including age, sex, body mass index, 
AF duration, CHA2DS2-VASc score, left ventricular ejection fraction, left atrial diameter, and 
types of antiarrhythmic drugs, were included in machine learning. We also collected 12-lead 
ECGs before and after ECV, and their ECG features were used for machine learning. Because we 
included only patients who underwent successful ECV, all 12-lead ECGs before ECV showed AF, 
whereas those after ECV showed sinus rhythm. Among the numerous available ECGs, we chose 
the closest possible ECGs from the date of the ECV. Consequently, we constructed two datasets 
i.e., clinical features and 12-lead ECGs. The data construction flow is illustrated in Figure 2.

Preprocessing
For clinical features, continuous variables were normalized using each maximum value, and 
empty values were substituted with −1. For 12-lead ECG features, we used the ventricular rate, 
QT interval, QRS duration, and R-axis from the raw ECG data. The R peak mean value of each 
lead (except aVR and aVL) and root mean square of the successive differences (RMSSD) in 
the RR interval was calculated using preprocessed ECG signals. To obtain these signals, they 
were filtered using a finite impulse response filter and a band-pass filter (22–333 Hz). The 
location of the R peaks was then determined using the BioSPPy Python library. For 15-minute 
ECG and photoplethysmography (PPG) signals, we employed a band-pass filter (0.2–8 Hz) for 
preprocessing. Features from the 12-lead ECG, 15-min single-lead ECG, and 15-minute PPG 
were also normalized by their maximum values.
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Enrollment flow

- Failed ECV
- ECV for other than AF
- Missing data
- Loss of 1-month follow-up 

Patients with AF and underwent ECV
between 2010 and 2021 (n=1,823)

Study population (n=718)

Study flow

Train machine learning
model

Validate machine learning
model

Optimize hyperparameters

Finalize machine learning
performance

Evaluate importance of
features

Compare machine learning
with C-statistic

Define study participants

Collect patient's data

Define training data for
machine learning

Evaluate C-statistic

Data preprocessing

Construct dataset

Figure 1. The enrollment and study flow. 
AF = atrial fibrillation; ECV = electrical cardioversion.



Machine-learning framework
In this study, logistic regression, gradient boosting, and random forest were implemented. 
We set logistic regression with L2 penalty and the number of maximum iterations to be 1,000 
using the Scikit-learn library from Python. The Scikit-learn library was also used for the 
random forest method, with 50 trees and the maximum depth of the tree as 3. For gradient 
boosting, we trained gradient boosting models from the extreme gradient boost (XGBoost) 
Python library with 50 boosting iterations, a learning rate of 0.05, and the learning task as 
logistic regression for binary classification. The area under the precision-recall curve (AUPRC) 
was used for evaluation during gradient-boosting training. We trained all the models using the 
default parameter settings of each Python library, except for what we described.

Evaluation of machine-learning performance
To evaluate the machine-learning performance, we performed a 10-fold cross-validation. 
In addition, each split for cross-validation was divided by considering the ratio of labels. 
After cross-validation, we gathered the results of each test split and measured the sensitivity, 
specificity, area under the receiver operating characteristic curve (AUROC), AUPRC, and 
F1-score. We then repeated the cross-validation with 5 different seed numbers and reported 
their average performance. Finally, the machine-learning performances with three different 
training datasets i.e., clinical features, 12-lead ECGs, and both, were compared.

Feature of importance
In addition to measuring the overall performance, we investigated the feature importance 
of the three machine-learning methods. Each method used different metrics because of the 
nature of machine-learning methods. The coefficients of the features were used to determine 
the importance of the features in the logistic regression. The accuracy improvement when each 
feature was added to an existing branch to create a new split was used to calculate the feature 
importance of the gradient-boosting method. The mean decrease in impurity, also known as 
the gini importance,14) was computed for the feature importance of the random forest method.
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Data construction flow

Collect raw data of 12-lead
ECGs

Extract 42 ECG features

Normalize features

Construct training dataset
by combining 8 clinical and

42 ECG features

Collect all available 75
clinical features

Exclude clinical features
with missing value >30%

Evaluate logistic regression
analyses

Exclude unimportant clinical
features (p>0.90)

Finalize 8 clinical features
for machine learning

Figure 2. The flow of data construction for machine learning. 
Eight clinical features and 42 ECG features were used for machine learning. 
ECG = electrocardiogram.



Exploratory analysis: extended monitoring of single-lead electrocardiogram 
and photoplethysmography
In selected patients, we measured single-lead ECG (lead II) and PPG data simultaneously 
over 15 minutes before and after ECV. PPG signals were recorded using CART (Sky Labs, Inc., 
Seongnam, Korea), which is a ring-type wearable device that can monitor PPG signals from a 
user’s finger and has a performance comparable to that of a medical-grade pulse oximeter.15) 
After preprocessing, the 15-minute ECG and PPG data were constructed as another training 
dataset. We investigated whether there was a performance improvement by adding 15-minute 
ECG and PPG datasets to the 12-lead ECG dataset.

Statistical analyses
The data were presented as either number (%), mean ± standard deviation, or mean (95% 
confidence interval; CI) according to the data type. The diagnostic performance of machine 
learning was evaluated using sensitivity, specificity, AUROC, AUPRC, and F1-score. The 
AUROC and AUPRC were calculated with 95% CIs. For clinical features, C-statistics were 
performed to predict the 1-month recurrence. The best AUROC with C-statistics was then 
compared with the machine-learning performance. The AUROCs of the different training 
datasets were compared using the DeLong test. In all statistical tests, p values <0.05 were 
used to reject the null hypothesis. The data were analyzed using SPSS version 22.0 (IBM 
Corp., Armonk, NY, USA).

RESULTS

A total of 718 patients who underwent successful ECV for persistent AF were analyzed (Table 1).  
The population’s mean age was 63.5±9.3 years; the male proportion was 78.8%; and the 
mean CHA2DS2-VASc score was 1.9±1.4. The most used antiarrhythmic drug was amiodarone 
(53.8%). The mean left atrial size was 49.0±6.6 mm.

Predictive performances of clinical features using the C-statistics
Supplementary Figure 1 illustrates the predictive performances of selected clinical features 
using C-statistics. Among the clinical features, AF duration showed the highest AUROC (0.58 
[95% CI, 0.54–0.62]). Left atrial size, body mass index, and age did not show significant 
predictive performance (AUROC, 0.53 [95% CI, 0.48–0.57]; 0.51 [0.47–0.55]; and 0.50 
[0.46–0.54], respectively).

Predictive performance of machine-learning models
Among the three machine-learning models (XGBoost, logistic regression, and random 
forest), the XGBoost model improved both AUROC and AUPRC when clinical features and 
ECGs were trained together (AUROC, 0.57, 0.60, and 0.63; AUPRC, 0.66, 0.68, and 0.71 for 
training clinical features, ECGs, and both, respectively) (Table 2). For the logistic regression 
model, no synergistic effect was observed in AUPRC when both datasets were used together 
(AUPRC, 0.62, 0.61, and 0.62 for training clinical features, ECGs, and both datasets, 
respectively). For the random forest model, there was no improvement in both AUROC and 
AUPRC by training both datasets (AUROC and AUPRC were 0.55 and 0.63, respectively).

Figure 3 illustrates the receiver operating characteristic curves of the XGBoost model based 
on the trained datasets. Compared to the training of clinical features, both the training of 12-
lead ECGs and all datasets showed significantly higher AUROCs (0.60 [95% CI, 0.58–0.62] 
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and 0.63 [0.61–0.64], respectively; both p<0.001). The XGBoost model training all datasets 
achieved a significantly higher AUROC than the C-statistic of the AF duration (AUROC, 0.63 
[95% CI, 0.61–0.64] vs. 0.58 [0.54–0.62], p<0.001).
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Table 1. Baseline characteristics of the study population (n =718)
Characteristics Value
Demographic factors

Age (years) 63.5±9.3
Male (%) 566 (78.8)
Body weight (kg) 70.6±14.1
Body mass index (kg/m2) 25.0±3.7
CHA2DS2-VASc scores 1.9±1.4
AF duration (months) 24 (6–66)

Types of atrial fibrillation (%)
Persistent 718 (100.0)

Comorbidities (%)
Hypertension 401 (55.8)
Diabetes mellitus 147 (20.5)
Heart failure 98 (13.6)
Ischemic heart disease 49 (6.8)
Stroke 53 (7.4)
Peripheral artery disease 0 (0)
Valvular heart disease 26 (3.6)
Dyslipidemia 204 (28.4)
Chronic kidney disease 45 (6.3)
Chronic obstructive pulmonary disease 0 (0)

Types and doses of antiarrhythmic drugs (%)*

None 50 (7.0)
Flecainide 25 mg bid or 50 mg qd 5 (0.7)
Flecainide 50 mg bid 45 (6.3)
Flecainide 75 mg bid or higher doses 10 (1.4)
Propafenone 225 mg qd 10 (1.4)
Propafenone 225 mg bid 190 (26.5)
Propafenone 325 mg bid 8 (1.1)
Pilsicainide 25 mg qd 3 (0.4)
Pilsicainide 50 mg bid or higher doses 8 (1.1)
Amiodarone 100 mg qd 77 (10.7)
Amiodarone 200 mg qd 300 (41.8)
Amiodarone 200 mg bid 9 (1.3)
Sotalol 40 mg bid 2 (0.3)
Dronedarone 400 mg qd 1 (0.1)

Cardiovascular medications (%)
β blockers 242 (33.7)
Calcium channel blockers 132 (18.4)
Renin-angiotensin-aldosterone system blockades 181 (25.2)
Statins 238 (33.1)

Echocardiographic features
Left ventricular ejection fraction (%) 57.1±7.8
Left ventricular end-diastolic diameter (mm) 48.9±4.5
Left ventricular end-systolic diameter (mm) 31.2±4.9
Interventricular septal thickness (mm) 9.4±1.4
Posterior wall thickness (mm) 9.5±2.2
Aorta diameter (mm) 34.8±5.6
Left atrial size (mm) 49.0±6.6
Left atrial volume (cc) 110.2±36.9
Pulmonary arterial systolic pressure (mmHg) 30.9±5.8
Left ventricular mass (g) 164±45

Data are number (%), mean ± standard deviation, or median (interquartile range).
AF = atrial fibrillation; bid = twice a day; qd = once a day.
*The sum of proportions may not add up to 100% due to rounding.



Impact of features on the machine-learning model
The features of importance evaluated using the XGBoost model are summarized in Figure 4. 
Among the clinical features, the AF duration was the most important feature for the machine-
learning model to predict the 1-month recurrence of AF, followed by the type of concomitant 
antiarrhythmic drug, CHA2DS2-VASc score, and age. Among the ECGs, features from AF ECG 
are regarded as more important than those from sinus rhythm ECG. Atrial rate, R peak, and 
QRS duration are some of the most important ECG features. If we included all datasets, the 
ECG features were at a higher priority than the clinical features in predicting AF recurrence.

Impact of training extended monitoring datasets on predictive performance
Among the study population, 261 patients successfully recorded extended monitoring 
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Table 2. Predictive performances of machine learning models according to algorithms and trained datasets
Algorithms Datasets AUROC AUPRC F1-score Sensitivity Specificity
XGBoost Clinical features 0.57 0.66 0.73 89.2 17.9

ECGs 0.60 0.68 0.72 82.2 29.0
All datasets 0.63 0.71 0.73 84.7 28.2

Logistic regression Clinical features 0.53 0.62 0.72 85.8 19.9
ECGs 0.51 0.61 0.72 87.3 13.8
All datasets 0.54 0.62 0.70 79.1 28.4

Random forest Clinical features 0.55 0.63 0.74 90.0 20.6
ECGs 0.55 0.63 0.74 88.7 20.7
All datasets 0.55 0.63 0.74 90.2 20.1

The machine learning model used the XGBoost algorithm. Data for sensitivity and specificity are shown as %.
AUPRC = area under the precision-recall curve; AUROC = area under the receiver operating characteristic curve; 
ECG = electrocardiogram; XGBoost = extreme gradient boost.

Se
ns

iti
vi

ty
 (%

)

1-Specificity (%)

100

80

60

40

20

0 20 40 60 80 100

0.58
0.57Clinical features

Duration of AF (0.54–0.62)
(0.55–0.58)

0.60 (0.58–0.62)
0.63 (0.61–0.64)

0.016

<0.001
<0.001

p valueAUROC (95% CI)

12-lead ECGs
All datasets

Figure 3. Predictive performance of the machine learning model for 1-month AF recurrence after electrical 
cardioversion according to trained datasets. 
The XGBoost model training both ECGs and clinical features improved the predictive performance compared 
with training either ECGs or clinical features alone. The dotted line represents the best AUROC based on the 
C-statistics of the AF durations. 
AF = atrial fibrillation; AUROC = area under the receiver operating characteristic curve; ECG = electrocardiogram; 
XGBoost = extreme gradient boost.



i.e., simultaneous single-lead ECG and PPG over 15 minutes both before and after ECV. 
The XGBoost model showed AUROC of 0.58 (95% CI, 0.55–0.61) if it trained the clinical 
features and the extended monitoring dataset. Even though the extended monitoring dataset 
was added to the 12-lead ECG dataset and the clinical features, there was no significant 
improvement in AUROC (0.57 [95% CI, 0.54–0.60], p=0.618) (Supplementary Figure 2). In 
addition, the other diagnostic parameters showed no significant improvement (Table 3).

DISCUSSION

In this study, we investigated a machine-learning approach to predict 1-month AF recurrence 
after ECV in patients with persistent AF. Among the algorithms, XGBoost exhibited the 
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Figure 4. The visualization of the feature of importance for the machine learning model. 
The AF duration was the most important feature among the clinical parameters. Among all the features, AF ECG features were of high priority for the machine 
learning model to predict 1-month recurrence after ECV. The x-axis represents the frequency of a feature being utilized to split the data across all trees in the 
machine learning model. A higher value on the x-axis indicates greater importance of the feature in classifying patients with and without 1-month recurrence of AF. 
AAD = antiarrhythmic drug; AF = atrial fibrillation; ECG = electrocardiogram; ECV = electrical cardioversion; LA = left atrial; LVEF = left ventricular ejection fraction.



best predictive performance. Training both clinical and ECG features improved the model’s 
performance as compared to training each dataset alone, thereby suggesting a synergistic 
impact in improving the predictability of AF recurrence by learning multiple types of 
information on a given patient. Although the machine-learning model only achieved modest 
performance (AUROC, 0.63), it outperformed the C-statistics of the selected clinical features. 
Compared with previous reports, the main difference in our study is that we used not only 
clinical features but also ECGs and extended monitoring data for machine learning.

ECV is an effective and safe method for converting sinus rhythm in patients with AF. Although it 
risks periprocedural thromboembolic events, the event rate could be lowered to approximately 
0.28–0.8%, if treated appropriately with anticoagulants.16)17) When ECV is considered as an 
elective procedure for AF management, the prediction of successful and effective ECV is 
important. If patients with AF fail ECV or suffer from IRAF, choosing ineffective patients may 
save costs, time, and medical supplies for both the patients and hospitals.

Because AF affects electrical, structural, and mechanical remodeling of the atria,11) various 
characteristics of the heart e.g., ECG, echocardiography, and serologic biomarkers, may 
reflect the severity of AF and thus, can be used to predict recurrence after ECV. For ECG, an 
atrial substrate, a known risk factor of AF recurrence,18) is not only related to atrial fibrosis and 
mechanical dysfunction, but also affects P waves resulting in low amplitudes and dispersed 
widths. Therefore, P-wave signal-averaged ECG may be used to predict AF recurrence after 
ECV.7) Besides laboratory test results and clinical features associated with AF progression 
e.g., longer AF duration, older age, or higher body mass index, are well-known predictors 
of AF recurrence because they affect atrial remodeling.11) However, the clinical utility of such 
predictors remains limited because of their suboptimal predictive performance.

Although we used machine learning to improve the predictive performance, our model may 
not seem to be significantly superior to those of previous studies.7)8) We hypothesized that AF 
characteristics differed across studies, thus leading to heterogeneous results. However, such 
a modest performance may be insignificant when the study focuses on persistent AF alone. 
For example, the studies using persistent AF patients tended to have modest performance 
despite machine learning; our data showed the best AUROC (0.63 [95% CI, 0.61–0.64]), 
whereas Vinter et al.19) showed AUROC, 0.59 (95% CI 0.51–0.68). We assume that the 
improved performance could be explained by the fact that we used 12-lead ECG data together 
with other clinical features. Our analysis showed that ECG features were more important 
than clinical features in machine learning (Figure 4). Another possibility is that predicting 
AF recurrence after ECV may be a difficult task in machine learning. According to a recent 
report, machine-learning prediction of AF recurrence after ECV was not superior to that of 
CHA2DS2-VASc scores, which was inconsistent with our findings (Figure 3, Supplementary 
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Table 3. Predictive performances of the machine learning model after additional training of extended monitoring 
datasets in selected patients (n=261)
Datasets AUROC AUPRC F1-score Sensitivity Specificity
Clinical features and extended monitoring dataset 0.58 0.71 0.77 89.1 18.4
12-lead ECGs and extended monitoring dataset 0.58 0.72 0.77 87.9 18.9
All datasets 0.57 0.71 0.77 88.4 18.9
The machine learning model used the XGBoost algorithm. The extended monitoring dataset refers to the 
simultaneous 15-minute single-lead ECG (lead II) and PPG datasets recorded before and after the ECV. Data for 
sensitivity and specificity are shown as %.
AUPRC = area under the precision-recall curve; AUROC = area under the receiver operating characteristic curve; 
ECG = electrocardiogram; ECV = electrical cardioversion; PPG = photoplethysmography; XGBoost = extreme 
gradient boost.



Figure 1).20) However, this inconsistency might be explained by the fact that the previous 
study also lacked 12-lead ECG data for machine learning.

In our analysis, the XGBoost model trained with all clinical features showed a similar AUROC 
performance when compared to the C-statistic of AF duration; AUROC, 0.57 (95% CI, 
0.55–0.58) and 0.58 (0.54–0.62), respectively. The slightly worse performance of XGBoost 
can be due to the suboptimal model tuning and/or the small size of the training dataset. 
Further tuning might allow a slightly better performance for the XGBoost model with clinical 
features, but it is unlikely to affect our overall conclusion on whether ECG features can be 
useful when used in addition to the clinical features.

In our study, a total of 42 features (21 features each for ECGs before and after electrical 
cardioversion) were utilized in the machine learning analysis of ECG features. These features 
included variables such as rates and amplitudes of R-wave peaks, which were averaged over 
the 10-second ECG recordings. Additionally, to emphasize the importance of variable RR 
intervals, we incorporated features such as RMSSD of RR intervals using lead II. This allowed 
the machine learning algorithm to learn the irregularity of RR intervals during AF. As a 
result, the model assigned higher importance to RMSSD of RR intervals during AF compared 
to those during sinus rhythm (Figure 4). Among the ECG features, the amplitudes of R-wave 
peaks and QRS duration were ranked as highly important (Figure 4). This observation can be 
partly explained by the association between advanced heart failure, diseased myocardium, 
decreased amplitudes of R-wave peaks, and widened QRS durations.

Instead of relying on predefined ECG features, there is a possibility that learning the raw data 
of ECGs could lead to improved performance. However, deep learning with raw ECG data 
requires a sufficiently large sample size to learn features effectively. In our study, we aimed to 
determine if a deep learning model utilizing raw ECG signal data could outperform machine 
learning using XGBoost. When we trained a few general architectures such as multilayer 
perceptron, ResNet-18, and ResNet-34 for deep learning analysis from scratch with raw ECG 
signal data, we obtained inferior results to those achieved using XGBoost (Table 2).

The inferior performance of deep learning with raw ECG data compared to machine learning 
with predefined ECG features can be attributed to several factors. One hypothesis is that 
the limited sample size hindered the capture of intricate ECG features that were predictive 
of AF recurrence after ECV. Our study population comprised only 718 patients, and each 
ECG sample contained 500 Hz (sampling rate) × 10 seconds (duration of ECG recording) = 
5,000 dimensions. As the dimensionality of the training data increases, a larger number of 
samples becomes necessary to adequately learn important features. Therefore, the relatively 
limited size of our training samples may have contributed to the inferior performance of deep 
learning in our experiments. Our study did not exclude the possibility that deep learning of a 
sufficiently larger dataset may improve the performance. Additionally, utilizing a pretrained 
model with transfer learning or self-supervised learning approaches could allow us to 
improve the performance. In our study, however, we aimed to develop machine learning 
models solely based on our current dataset.

Based on the finding that ECG may be more beneficial than clinical features, we hypothesized 
that extended monitoring of biosignals i.e., single-lead ECG or PPG, could further improve 
the predictive performance. However, in our study, the small number of participants (n=261) 
seemed to limit appropriate feature learning and thus, led to no significant improvement 
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in performance (Table 3, Supplementary Figure 2). Because the extended monitoring data 
require a larger dimension of the neural network for feature learning, we assume that a larger 
participant number is needed for sufficient learning and feature exploitation to effectively 
predict AF recurrence.

Some limitations of this study should be noted. First, the study population might need to be 
increased to effectively learn the appropriate features for predicting AF recurrence after ECV. 
Transfer learning21) could potentially be applied in our study if a relevant large-volume dataset 
including both ECGs and information on AF recurrence after direct current cardioversion 
were available. Unfortunately, to our knowledge, no such dataset currently exists. As a result, 
the utilization of transfer learning in our study is not feasible at present. Second, our study 
did not perform external validation, which may yield different results in other populations. 
While our analyses enabled internal validation of our machine learning model, we recognize 
the limitation of not having external validation, which hampers the generalizability of our 
model to new patients. To mitigate this issue, potential strategies like transfer learning 
or increasing the dataset size could be explored. However, both approaches necessitate a 
larger dataset, and regrettably, we have not encountered any suitable databases to fulfill this 
requirement to the best of our knowledge. Third, the detection of AF recurrence relied on 
either a 12-lead ECG or 24-hour Holter test; some patients with underlying low-burden AF 
might have been undetected. AF recurrence is a stochastic phenomenon, and undetected 
recurrences might adversely affect the machine-learning model. Fourth, sinus rhythm ECG 
after ECV may be less effective in predicting AF recurrence. Because sinus rhythm ECG was 
obtained while the atrium was in post-shock vulnerability, its information may be nonspecific 
and less beneficial to the machine-learning model. Consequently, its data may differ from 
those obtained after the relapse gap or electrical modeling.22) This may partly explain why 
the features of sinus rhythm ECGs were less important than those of AF ECGs (Figure 4). 
Fifth, some of the known predictors e.g., natriuretic peptides9) and high-sensitivity C-reactive 
proteins,10) were not included in our model because of their unavailability.

In conclusion, a machine-learning approach was feasible for predicting AF recurrence after 
ECV in patients with persistent AF. Although machine learning predicts AF recurrence better 
than traditional statistical analysis, its clinical utility is limited owing to its modest predictive 
performance. Currently, given the modest performance of our model, relying solely on the 
model to predict AF recurrence may have limited utility. Therefore, it should be used as an 
adjunct tool to physician’s evaluation. Prediction of AF recurrence after ECV seems difficult, 
partly because of the stochastic and multifactorial nature of AF. However, as machine 
learning gathered more information from AF patients, we observed that its performance 
improved. Therefore, further studies are warranted to improve predictive performance and 
validate the utility of machine learning in predicting patients with ineffective ECV.

SUPPLEMENTARY MATERIALS

Supplementary Table 1
A complete list of investigated clinical features

Click here to view
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Supplementary Figure 1
The C-statistics of clinical features for 1-month AF recurrence after electrical cardioversion.

Click here to view

Supplementary Figure 2
The exploratory analysis – The impact of adding the 15-minute single-lead ECG and PPG 
dataset to the 12-lead ECG datasets on predictive performance.

Click here to view
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