DOI QR코드

DOI QR Code

Effects of GGX on an Ovalbumin-induced Asthma Mice Model

Ovalbumin으로 유발된 천식 동물모델에서 GGX의 효과

  • Tae-hyeon Kim (Division of Respiratory System, Dept. of Internal Medicine, College of Korean Medicine, Daejeon University) ;
  • Won-kyung Yang (Division of Respiratory System, Dept. of Internal Medicine, College of Korean Medicine, Daejeon University) ;
  • Su-won Lee (Division of Respiratory System, Dept. of Internal Medicine, College of Korean Medicine, Daejeon University) ;
  • Seong-cheon Woo (Division of Respiratory System, Dept. of Internal Medicine, College of Korean Medicine, Daejeon University) ;
  • Seung-hyung Kim (Institute of Traditional Medicine and Bioscience, Daejeon University) ;
  • Yang-chun Park (Division of Respiratory System, Dept. of Internal Medicine, College of Korean Medicine, Daejeon University)
  • 김태현 (대전대학교 한의과대학 폐계내과학교실) ;
  • 양원경 (대전대학교 한의과대학 폐계내과학교실) ;
  • 이수원 (대전대학교 한의과대학 폐계내과학교실) ;
  • 우성천 (대전대학교 한의과대학 폐계내과학교실) ;
  • 김승형 (대전대학교 동서생명과학연구원) ;
  • 박양춘 (대전대학교 한의과대학 폐계내과학교실)
  • Received : 2023.03.08
  • Accepted : 2023.06.27
  • Published : 2023.06.30

Abstract

Objective: The purpose of this study is to evaluate the effects of GGX on an ovalbumin (OVA)-induced asthma mice model. Methods: Balb/c mice were challenged with OVA and then treated with three concentrations of GGX (100, 200, and 400 mg/kg). After sacrifice, the bronchoalveolar lavage fluid (BALF) or lungs of the mice were analyzed by fluorescence-activated cell sorting, ELISA, real-time PCR, H&E, Masson's trichrome, PAS and AB-PAS staining, and immunohistofluorescence staining. Results: GGX significantly inhibited the increase of total cells, immune cells (lymphocyte, neutrophils, macrophage, CD4+, CD8+, CD4+CD69+, CD62L-CD44high+, Gr-1+SiglecF-), and the expression of cytokines (IL-4, IL-5, IL-13, IFN-γ) in BALF. It also significantly inhibited the increase of total cells, immune cells (lymphocyte, neutrophils, eosinophil/macrophage, CD3+, CD19+, CD3+CD193+, CD4+, CD8+, CD4+CD69+, CD62L-CD44high+, and Gr-1+SiglecF-), and the expression of IL-13, TARC, and MCP-1 in lung tissue. GGX decreased the severity of histological lung injury and the expressions of STAT3 and GATA3. Conclusion: This study suggests the probability of using GGX for the treatment of asthma by inhibiting inflammatory immune response.

Keywords

Acknowledgement

이 논문은 2021년도 보건복지부 한의기반융합기술개발사업(HI21C1339) 및 2022년도 한국연구재단의 기초연구사업(과제번호: NRF-2022R1A2C1007165)의 지원을 받아 수행된 연구임.

References

  1. Anderson GP. Endotyping asthma: new insights into key pathogenic mechanisms in a complex, heterogeneous disease. Lancet 2008;372(9643):1107-19.  https://doi.org/10.1016/S0140-6736(08)61452-X
  2. Kuipers H, Lambrecht BN. The interplay of dendritic cells, Th2 cells and regulatory T cells in asthma. Curr Opin Immunol 2004;16(6):702-8.  https://doi.org/10.1016/j.coi.2004.09.010
  3. Scanlon ST, McKenzie AN. Type 2 innate lymphoid cells: new players in asthma and allergy. Curr Opin Immunol 2012;24(6):707-12.  https://doi.org/10.1016/j.coi.2012.08.009
  4. Gans MD, Gavrilova T. Understanding the immunology of asthma: Pathophysiology, biomarkers, and treatments for asthma endotypes. Paediatr Respir Rev 2020;36:118-27.  https://doi.org/10.1016/j.prrv.2019.08.002
  5. Bousquet J, Jeffery PK, Busse WW, Johnson M, Vignola AM. Asthma. From bronchoconstriction to airways inflammation and remodeling. Am J Respir Crit Care Med 2000;161(5):1720-45.  https://doi.org/10.1164/ajrccm.161.5.9903102
  6. James A. Airway remodeling in asthma. Curr Opin Pulm Med 2005;11(1):1-6.  https://doi.org/10.1097/01.mcp.0000146779.26339.d8
  7. Kaminska M, Foley S, Maghni K, Storness-Bliss C, Coxson H, Ghezzo H, et al. Airway remodeling in subjects with severe asthma with or without chronic persistent airflow obstruction. J Allergy Clin Immunol 2009;124(1):45-51.  https://doi.org/10.1016/j.jaci.2009.03.049
  8. Lee EG, Rhee CK. Principles of asthma treatment and appropriate use of new drugs. J Korean Med Assoc 2022;65(1):44-54.  https://doi.org/10.5124/jkma.2022.65.1.44
  9. Ahmet A, Kim H, Spier S. Adrenal suppression: a practical guide to the screening and management of this under-recognized complication of inhaled corticosteroid therapy. Allergy Asthma Clin Immunol 2011;7(1):13. 
  10. Jacobson GA, Raidal S, Hostrup M, Calzetta L, Wood-Baker R, Farber MO, et al. Long-Acting β2-Agonists in Asthma: Enantioselective Safety Studies are Needed. Drug Saf 2018;41(5):441-9.  https://doi.org/10.1007/s40264-017-0631-1
  11. Rank MA, Gionfriddo MR, Pongdee T, Volcheck GW, Li JT, Hagan CR, et al. Stepping down from inhaled corticosteroids with leukotriene inhibitors in asthma: a systematic review and meta-analysis. Allergy Asthma Proc 2015;36(3):200-5.  https://doi.org/10.2500/aap.2015.36.3839
  12. Kang SW, Kim KI, Bu Y, Lee BJ, Jung HJ. Therapeutic Potential of Chungsangboha-tang for the Treatment of Asthma: A Review of Preclinical and Clinical Studies. J Clin Med 2022;11(14):4035. 
  13. Lim CY, Kim HW, Kim BY, Cho SI. Genome wide expression analysis of the effect of Socheongryong Tang in asthma model of mice. J Tradit Chin Med 2015;35(2):168-74.  https://doi.org/10.1016/S0254-6272(15)30024-8
  14. Kim JJ, Jung HJ, Jung SK, Rhee HK. The Effects of Maekmoondong-tang and Jeongcheonhwadamgangki -tang on Immune Cell and Serum OA-specific IgE in BALF in Rat Asthma Model. J Korean Med 2002;23(1):37-49. 
  15. Park CS, Hong M, Ban JJ, Jeong HS, Choi JY. Review on herbal medications of asthma in domestic clinical research on traditional Korean medicine. J Physiol Pathol Korean Med 2018;32(6):361-9.  https://doi.org/10.15188/kjopp.2018.12.32.6.361
  16. Hwang DY. Bang-yak-hap-pyeon. Seoul: Namsandang; 1986, p. 240. 
  17. Herbology Editorial Committee of Korean Medicine schools. Boncho-hak. Seoul: Younglimsa. 1991, p. 124-5, 136-7, 214-5, 448-9, 534-5, 580-1, 588-9. 
  18. Lyu YR, Yang WK, Lee SW, Kim SH, Kim DS, Son E, et al. Inhibitory effects of modified gamgil-tang in a particulate matter-induced lung injury mouse model. J Ethnopharmacol 2022;284:114789. 
  19. Kim TH, Yang WK, Lee SW, Kim SH, Lyu YR, Park YC. Inhibitory Effects of GGX on Lung Injury of Chronic Obstructive Lung Disease (COPD) Mice Model. J Korean Med 2021;42(3):56-71.  https://doi.org/10.13048/jkm.21025
  20. Dey S, Eapen MS, Chia C, Gaikwad AV, Wark PAB, Sohal SS. Pathogenesis, clinical features of asthma COPD overlap, and therapeutic modalities. Am J Physiol Lung Cell Mol Physiol 2022;322(1):L64-L83.  https://doi.org/10.1152/ajplung.00121.2021
  21. Tanaka H, Masuda T, Tokuoka S, Komai M, Nagao K, Takahashi Y, et al. The effect of allergen-induced airway inflammation on airway remodeling in a murine model of allergic asthma. Inflamm Res 2001;50(12):616-24.  https://doi.org/10.1007/PL00000243
  22. Lee MY, Ahn KS, Kwon OK, Kim MJ, Kim MK, Lee IY, et al. Anti-inflammatory and anti-allergic effects of kefir in a mouse asthma model. Immunobiology 2007;212(8):647-54.  https://doi.org/10.1016/j.imbio.2007.05.004
  23. Collaborators GCRD. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016;388(10053):1545-602.  https://doi.org/10.1016/S0140-6736(16)31678-6
  24. Korea Disease Control and Prevention Agency. The eighth Korea National Health and Nutrition Examination Survey (KNHANES VIII-1), 2019. Cheongju: Korea Disease Control and Prevention Agency; 2020. 
  25. Masoli M, Fabian D, Holt S, Beasley R. The global burden of asthma: executive summary of the GINA Dissemination Committee report. Allergy 2004;59(5):469-78.  https://doi.org/10.1111/j.1398-9995.2004.00526.x
  26. Lee EW, Kim HS, Kim W, Nam JY, Park JH. Socioeconomic Burden of Disease Due to Asthma in South Korea. Asia Pac J Public Health 2020;32(4):188-93.  https://doi.org/10.1177/1010539520920524
  27. Busse WW, Lemanske Jr RF. Asthma. N Engl J Med 2002;344(5):350-62.  https://doi.org/10.1056/NEJM200102013440507
  28. Burke W, Fesinmeyer M, Reed K, Hampson L, Carlsten C. Family history as a predictor of asthma risk. Am J Prev Med 2003;24(2):160-9.  https://doi.org/10.1016/S0749-3797(02)00589-5
  29. Abreo A, Gebretsadik T, Stone CA, Hartert TV. The impact of modifiable risk factor reduction on childhood asthma development. Clin Transl Med 2018 Jun 11;7(1):15. 
  30. Haahtela T, Tuomisto LE, Pietinalho A, Klaukka T, Erhola M, Kaila M, et al. A 10 year asthma programme in Finland: major change for the better. Thorax 2006;61(8):663-70.  https://doi.org/10.1136/thx.2005.055699
  31. Kim SS, Lee SC, Shin HD, Shin MK, Kim JH, Song HJ. Studies on the allergy asthma effect of radix Platicodi. Korean J Herbology 2004;19(2):61-70. 
  32. Jung JK, Kang SY, Kim J, Lee SK, Park YK. Effects of Platycodi Radix ethanol extract on ovalbumin-induced allergic responses in mice. Korean J Herbology 2012;27(6):123-9.  https://doi.org/10.6116/kjh.2012.27.6.123
  33. Park CY, Kim YI, Hong KE. The experimental study on the suppression effect of asthma and immune response improvement of Platycodi Radix herbal-acupuncture. J Pharmacopuncture 2006;9(3):23-35.  https://doi.org/10.3831/KPI.2006.9.3.023
  34. Jo EH, Jo IJ, Park SJ, Jo SH, Park MC. Effects of Glycyrrhiza uralensis Fisch (GUF) Extract on the Ovalbumin-Induced Allergid Asthma in Mice. J Korean Med Ophthalmol Otolaryngo Dermatol 2014;27(3):96-105.  https://doi.org/10.6114/jkood.2014.27.3.096
  35. Han YJ, Park YC. Effects of Glycyrrhiza uralensis Fisch on Immunocyte and Cytokine Production in Asthma Model Mouse. Korean J Orient Int Med 2004;25(3):408-17. 
  36. Kim JM, Kim DJ, Kim TH, Baek JM, Kim HS, Choe M. Effects of Water Extract of Glycyrrhiza uralensis on β-Hexosaminidase Release and Expression of the Cytokines of RBL-2H3 Mast Cells. Korean J Medicinal Crop Sck 2010;18(4):231-7. 
  37. Chung KJ, Jung HJ, Jung SK, Rhee HK. Lonicerae Flos contributes to the chemotaxis of eosinophils and secretion of cytokines in A549 human epithelial cells. J Korean Orient Int Med 2005;26(1):129-42. 
  38. Kang OH, Choi JG, Lee JH, Kwon DY. Luteolin isolated from the flowers of Lonicera japonica suppresses inflammatory mediator release by blocking NF-kappaB and MAPKs activation pathways in HMC-1 cells. Molecules 2010;15(1):385-98.  https://doi.org/10.3390/molecules15010385
  39. Kang SY, Woo ER, Park YK. Effect of the 70% ethanol extract of Mori Cortex Radidus on ovalbumin-induced allergic asthma in mice. Korean J Herbology 2014;29(4):1-8.  https://doi.org/10.6116/kjh.2014.29.4.1
  40. Kim JM, Baek JM, Kim HS, Choe M. Antioxidative and Anti-asthma Effect of Morus Bark Water Extracts. J Korean Soc Food Sci Nutr 2010;39(9):1263-9.  https://doi.org/10.3746/jkfn.2010.39.9.1263
  41. Anderson GP. Endotyping asthma: new insights into key pathogenic mechanisms in a complex, heterogeneous disease. Lancet 2008;372(9643):1107-19.  https://doi.org/10.1016/S0140-6736(08)61452-X
  42. DeGrendele HC, Estess P, Siegelman MH. Requirement for CD44 in activated T cell extravasation into an inflammatory site. Science 1997;278(5338):672-5.  https://doi.org/10.1126/science.278.5338.672
  43. Matucci A, Nencini F, Maggiore G, Chiccoli F, Accinno M, Vivarelli E, et al. High proportion of inflammatory CD62L low eosinophils in blood and nasal polyps of severe asthma patients. Clin Exp Allergy 2022 doi: 10.1111/cea.14153.Online ahead of print. 
  44. Kang JS, Yoon YD, Ahn JH, Kim SC, Kim KH, Kim HM, et al. B cell-activating factor is a novel diagnosis parameter for asthma. Int Arch Allergy Immunol 2006;141(2):181-8.  https://doi.org/10.1159/000094897
  45. Tang S, Shu X. Effect of CCR3 gene on related inflammatory cells in respiratory allergic diseases. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 2021;35(1):80-4. 
  46. Miki-Hosokawa T, Hasegawa A, Iwamura C, Shinoda K, Tofukuji S, Watanabe Y, et al. CD69 controls the pathogenesis of allergic airway inflammation. J Immunol 2009;183(12):8203-15.  https://doi.org/10.4049/jimmunol.0900646
  47. Percopo CM, Brenner TA, Ma M, Kraemer LS, Hakeem RMA, Lee JJ, et al. SiglecF+Gr1hi eosinophils are a distinct subpopulation within the lungs of allergen-challenged mice. J Leukoc Biol 2017;101(1):321-8.  https://doi.org/10.1189/jlb.3A0416-166R
  48. Spoelstra FM, Hovenga H, Noordhoek JA, Postma DS, Kauffman HF. Changes in CD11b and L-selectin expression on eosinophils are mediated by human lung fibroblasts in vitro. Am J Respir Crit Care Med 1998;158(3):769-77.  https://doi.org/10.1164/ajrccm.158.3.9712143
  49. Steinke JW, Borish L. Th2 cytokines and asthma. Interleukin-4: its role in the pathogenesis of asthma, and targeting it for asthma treatment with interleukin-4 receptor antagonists. Respir Res 2001;2(2):66-70.  https://doi.org/10.1186/rr40
  50. Konig K, Klemens C, Eder K, San Nicolo M, Becker S, Kramer MF, et al. Cytokine profiles in nasal fluid of patients with seasonal or persistent allergic rhinitis. Allergy Asthma Clin Immunol 2015;11(1):26. 
  51. Pelaia C, Paoletti G, Puggioni F, Racca F, Pelaia G, Canonica GW, et al. Interleukin-5 in the Pathophysiology of Severe Asthma. Front Physiol 2019;10:1514. 
  52. Corren J. Role of interleukin-13 in asthma. Curr Allergy Asthma Rep 2013;13(5):415-20.  https://doi.org/10.1007/s11882-013-0373-9
  53. Kumar RK, Webb DC, Herbert C, Foster PS. Interferon-gamma as a possible target in chronic asthma. Inflamm Allergy Drug Targets 2006;5(4):253-6.  https://doi.org/10.2174/187152806779010909
  54. Lambrecht BN, Hammad H, Fahy JV. The Cytokines of Asthma. Immunity 2019 Apr 16;50(4):975-91. doi: 10.1016/j.immuni.2019.03.018. 
  55. Berin MC. The Role of TARC in the Pathogenesis of Allergic Asthma. Drug News Perspect 2002;15(1):10-6.  https://doi.org/10.1358/dnp.2002.15.1.660501
  56. Rose CE Jr, Sung SS, Fu SM. Significant involvement of CCL2 (MCP-1) in inflammatory disorders of the lung. Microcirculation 2003;10(3-4):273-88.  https://doi.org/10.1038/sj.mn.7800193
  57. Nikolskii AA, Shilovskiy IP, Barvinskaia ED, Korneev AV, Sundukova MS, Khaitov MR. Role of STAT3 Transcription Factor in Pathogenesis of Bronchial Asthma. Biochemistry (Mosc) 2021;86(11):1489-501.  https://doi.org/10.1134/S0006297921110122
  58. Barnes PJ. Role of GATA-3 in allergic diseases. Curr Mol Med 2008;8(5):330-4. https://doi.org/10.2174/156652408785160952