DOI QR코드

DOI QR Code

A report on five unrecorded bacterial species belonging to the phyla Actinomycetota, Bacillota and Pseudomonadota in Korea isolated in 2020

  • Hyosun Lee (Department of Biological Science, College of Biological and Environmental Sciences, Sangji University) ;
  • So-Yi Chea (Department of Biological Science, College of Biological and Environmental Sciences, Sangji University) ;
  • Ki-Eun Lee (Microorganism Resources Division, National Institute of Biological Resources) ;
  • In-Tae Cha (Microorganism Resources Division, National Institute of Biological Resources) ;
  • Dong-Uk Kim (Department of Biological Science, College of Biological and Environmental Sciences, Sangji University)
  • 투고 : 2021.01.14
  • 심사 : 2023.05.25
  • 발행 : 2023.08.04

초록

During an investigation into the indigenous prokaryotic species diversity in Korea, a total of five bacterial strains were isolated from various environments in Korea. The isolated bacterial strains were identified by analyzing their 16S rRNA gene sequences, and those with a minimum of 98.7% sequence similarity with known bacterial species but not reported in Korea were designated as unrecorded species. These isolates were assigned to three phyla, five orders, five families, and five different genera. The isolates were identified as Cumulibacter manganitolerans (99.1%) and Myolicibacterium tusciae (98.7%) of the class Actinomycetes; Bacillus marasmi (99.9%) of the class Bacilli; and Novosphingobium mathurense (100%) and Microvirga ossetica (98.8%) of the class Alphaproteobacteria. Gram reaction, colony and cellular morphology, basic biochemical characteristics, and phylogenetic position of theses isolates are also described.

키워드

과제정보

This work was supported by a grant from the National Institute of Biological Resources(NIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea (NIBR202002108).

참고문헌

  1. Amin, D.H., N.A. Abdallah, A. Abolmaaty, S. Tolba and E.M. Wellington. 2020. Microbiological and molecular insights on rare Actinobacteria harboring bioactive prospective. Bulletin of the National Research Centre 44(1):1-12. https://doi.org/10.1186/s42269-019-0259-7
  2. Baik, K.S., S.C. Park, E.M. Kim, K.S. Bae, J.H. Ahn, J.O. Ka, J. Chun and C.N. Seong. 2008. Diversity of bacterial community in freshwater of Woopo wetland. The Journal of Microbiology 46:647-655. https://doi.org/10.1007/s12275-008-0135-x
  3. Doetsch, R.N. 1981. Determinative methods of light microscopy. In: P. Gerhardt, R.G.E. Murray, R.N. Costilow, E.W. Nester, W.A. Wood, N.R. Krieg and G.H. Phillips (eds.), Manual of Methods for General Bacteriology, American Society for Microbiology, Washington, DC. pp. 21-33.
  4. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783-791. https://doi.org/10.2307/2408678
  5. Gibbons, N.E. and R.G.E. Murray. 1978. Proposals concerning the higher taxa of bacteria. International Journal of Systematic and Evolutionary Microbiology 28(1):1-6. https://doi.org/10.1099/00207713-28-1-1
  6. Goodfellow, M. 2012. Phylum XXVI. Actinobacteria phyl. nov. In: M. Goodfellow, Kampfer, P., Busse, H.-J., Trujillo, M.E., Suzuki, K.-I. (eds), Bergey's Manual of Systematic Bacteriology (2nd ed.), Springer, New York. pp. 33-34.
  7. Kimura, M. 1983. The neutral theory of molecular evolution. Cambridge University Press.
  8. Lee, H. and D.U. Kim. 2022. Biodegradation of Alachlor by a Newly Isolated Bacterium: Degradation Pathway and Product Analysis. Processes 10(11):2256.
  9. Liu, Q., J.Y. Roh, Y. Wang, J.Y. Choi, X.Y. Tao, J.S. Kim and Y.H. Je. 2012. Construction and characterisation of an antifungal recombinant Bacillus thuringiensis with an expanded host spectrum. The Journal of Microbiology 50:874-877. https://doi.org/10.1007/s12275-012-2201-7
  10. Oren, A. and G.M. Garrity. 2021. Valid publication of the names of forty-two phyla of prokaryotes. International Journal of Systematic and Evolutionary Microbiology 71(10):005056.
  11. Pruesse, E., J. Peplies and F.O. Glockner. 2012. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28(14):1823-1829. https://doi.org/10.1093/bioinformatics/bts252
  12. Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4(4):406-425.
  13. Takahashi, Y. and S. Omura. 2003. Isolation of new actinomycete strains for the screening of new bioactive compounds. The Journal of General and Applied Microbiology 49(3):141-154. https://doi.org/10.2323/jgam.49.141
  14. Tamura, K., G. Stecher and S. Kumar. 2021. MEGA11: molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution 38(7):3022-3027. https://doi.org/10.1093/molbev/msab120
  15. Van der Meij, A., S.F. Worsley, M.I. Hutchings and G.P. van Wezel. 2017. Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiology Reviews 41(3):392-416. https://doi.org/10.1093/femsre/fux005
  16. Weisburg, W.G., S.M. Barns, D.A. Pelletier and D.J. Lane. 1991. 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology 173(2):697-703. https://doi.org/10.1128/jb.173.2.697-703.1991
  17. Yoon, S.H., S.M. Ha, S. Kwon, J. Lim, Y. Kim, H. Seo and J. Chun. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. International Journal of Systematic and Evolutionary Microbiology 67(5):1613.
  18. Zhang, B., X. Wu, X. Tai, L. Sun, M. Wu, W. Zhang, X. Chen, G. Zhang, T. Chen, C. Liu and P. Dyson. 2019. Variation in actinobacterial community composition and potential function in different soil ecosystems belonging to the arid Heihe River Basin of Northwest China. Frontiers in Microbiology 10:2209.