Acknowledgement
This work was partly supported by Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (20212020800020, Development of High Efficiency Power Converter based on Multidisciplinary Design and Optimization Platform) and partly supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT)(No.2021R1A5A10318 68).
References
- Del Blanco, F.B., Degner, M.W., Lorenz, R.D.: Dynamic analysis of current regulators for AC motors using complex vectors. IEEE Trans. Ind. Appl. 35(6), 1424-1432 (1999) https://doi.org/10.1109/28.806058
- Briz, F., Degner, M.W., Lorenz, R.D.: Analysis and design of current regulators using complex vectors. IEEE Trans. Ind. Appl. 36(3), 817-825 (2000) https://doi.org/10.1109/28.845057
- Holtz, J., et al.: Design of fast and robust current regulators for high-power drives based on complex state variables. IEEE Trans. Ind. Appl. 40(5), 1388-1397 (2004) https://doi.org/10.1109/TIA.2004.834049
- Yang, S.C., Chen, G.R.: High-speed position-sensorless drive of permanent-magnet machine using discrete-time EMF estimation. IEEE Trans. Ind. Electron. 64(6), 4444-4453 (2017) https://doi.org/10.1109/TIE.2017.2652364
- Van Der Broeck, H.: Analysis of the harmonics in voltage fed inverter drives caused by PWM schemes with discontinuous switching operation. In: Conf. Record of EPE'91 (1991)
- Yim, J.-S., et al.: Modified current control schemes for high-performance permanent-magnet AC drives with low sampling to operating frequency ratio. IEEE Trans. Ind. Appl. 45(2), 763-771 (2009) https://doi.org/10.1109/TIA.2009.2013600
- Bon-Ho, B., Sul, S.K.: A compensation method for time delay of full-digital synchronous frame current regulator of PWM AC drives. IEEE Trans. Ind. Appl. 39(3), 802-810 (2003) https://doi.org/10.1109/TIA.2003.810660
- Hongrae, K., et al.: Discrete-time current regulator design for AC machine drives. IEEE Trans. Ind. Appl. 46(4), 1425-1435 (2010) https://doi.org/10.1109/TIA.2010.2049628
- Gao, J., et al.: Novel compensation strategy for calculation delay of finite control set model predictive current control in PMSM. IEEE Trans. Ind. Electron. 67(7), 5816-5819 (2020) https://doi.org/10.1109/TIE.2019.2934060
- Han, Y., et al.: Multiobjective finite control set model predictive control using novel delay compensation technique for PMSM. IEEE Trans. Power Electron. 35(10), 11193-11204 (2020) https://doi.org/10.1109/TPEL.2020.2979122
- Gong, C., et al.: Accurate FCS model predictive current control technique for surface-mounted PMSMs at low control frequency. IEEE Trans. Power Electron. 35(6), 5567-5572 (2020) https://doi.org/10.1109/TPEL.2019.2953787
- Sun, Z., et al.: Finite control set model-free predictive current control of PMSM with two voltage vectors based on ultralocal model. IEEE Trans. Power Electron. 38(1), 776-788 (2023) https://doi.org/10.1109/TPEL.2022.3198990
- Formentini, A., et al.: Speed finite control set model predictive control of a PMSM fed by matrix converter. IEEE Trans. Ind. Electron. 62(11), 6786-6796 (2015) https://doi.org/10.1109/TIE.2015.2442526
- Nguyen, H.T., Jung, J.W.: Finite control set model predictive control to guarantee stability and robustness for surface-mounted PM synchronous motors. IEEE Trans. Ind. Electron. 65(11), 8510-8519 (2018) https://doi.org/10.1109/TIE.2018.2814006
- Wang, Y., et al.: Modulated model-free predictive control with minimum switching losses for PMSM drive system. IEEE Access. 8, 20942-20953 (2020) https://doi.org/10.1109/ACCESS.2020.2968379
- Yu, F., et al.: An over-modulated model predictive current control for permanent magnet synchronous motors. IEEE Access. 10, 40391-40401 (2022) https://doi.org/10.1109/ACCESS.2022.3166511
- Wang, Q., et al.: A low-complexity optimal switching time-modulated model-predictive control for PMSM with three-level NPC converter. IEEE Trans. Transp. Electrific. 6(3), 1188-1198 (2020) https://doi.org/10.1109/TTE.2020.3012352
- Saeed, S., et al.: Fault-tolerant deadbeat model predictive current control for a fve-phase PMSM with improved SVPWM. Chin. J. Electr. Eng. 7(3), 111-123 (2021) https://doi.org/10.23919/CJEE.2021.000030
- Zhang, X., Hou, B., Mei, Y.: Deadbeat predictive current control of permanent-magnet synchronous motors with stator current and disturbance observer. IEEE Trans. Power Electron. 32(5), 3818-3834 (2017) https://doi.org/10.1109/TPEL.2016.2592534
- Yao, Y., et al.: An improved deadbeat predictive current control with online parameter identification for surface-mounted PMSMs. IEEE Trans. Ind. Electron. 67(12), 10145-10155 (2020) https://doi.org/10.1109/TIE.2019.2960755
- Dai, S., et al.: Deadbeat predictive current control for high-speed permanent magnet synchronous machine drives with low switching-to-fundamental frequency ratios. IEEE Trans. Ind. Electron. 69(5), 4510-4521 (2022) https://doi.org/10.1109/TIE.2021.3078383
- Jarzebowicz, L.: Errors of a linear current approximation in high-speed PMSM drives. IEEE Trans. Power Electron. 32(11), 8254-8257 (2017) https://doi.org/10.1109/TPEL.2017.2694450