DOI QR코드

DOI QR Code

Development of design chart for estimating penetration depth of dynamically installed Hall anchors in soft clays

  • Haijun Zhao (China Construction Eight Engineering Division Rail Transit Construction Co., L.T.D.) ;
  • Zhaohan Zhu (School of Electrical Engineering, Southwest Jiaotong University) ;
  • Jiawei Che (China Construction Eight Engineering Division Rail Transit Construction Co., L.T.D.) ;
  • Wanchun Chen (China Construction Eight Engineering Division Rail Transit Construction Co., L.T.D.) ;
  • Qian Yin (Nanjing Metro) ;
  • Dongli Guo (China Construction Eight Engineering Division Rail Transit Construction Co., L.T.D.) ;
  • Haiyang Hu (China Construction Eight Engineering Division Rail Transit Construction Co., L.T.D.) ;
  • Shuang Dong (China Construction Eight Engineering Division Rail Transit Construction Co., L.T.D.)
  • 투고 : 2023.02.03
  • 심사 : 2023.06.23
  • 발행 : 2023.07.25

초록

In this study, a series of three-dimensional numerical analyses were carried out to investigate the penetration performance of a dynamically installed Hall anchor. The advanced coupled Eulerian-Lagrangian (CEL) technique was adopted to accurately simulate the large soil deformation during the vertical penetration of a Hall anchor. In total, 52 numerical analyses were conducted to investigate the relationship between anchor penetration depth and the initial kinematic energy. Moreover, a sensitivity analysis was performed to investigate the effects of soil shear strength and soil type on the penetration mechanism of a drop anchor under self-weight. There is a monotonic increase in the penetration depth with an increasing anchor weight when the topsoil of the riverbed is not subjected to erosion. On the other hand, all the computed depths significantly increase when soil erosion is taken into consideration. This is mainly due to an enhanced initial kinematic energy from an increased dropping depth. Both depths increase exponentially with the initial kinematic energy. An enhanced shear strength can potentially increase the side resistance and end-bearing pressure around a drop anchor, thus significantly reducing the downward penetration of a hall anchor. Design charts are developed to directly estimate penetration depth and associated plastic zone due to dynamically installed anchor at arbitrary soil shear strength and anchor kinematic energy.

키워드

참고문헌

  1. American Petroleum Institute. (2005), Design and analysis of station keeping systems for floating structures. API Recommended Practice 2SK.
  2. An, X., Wang, F., Liang, C. and Liu, R. (2022), "Centrifuge modeling of dynamically penetrating anchors in sand and clay", Geomech. Eng., 30(6), 539-549. https://doi.org/10.12989/gae.2022.30.6.539.
  3. Cassidy, M. J., Gaudin, C., Randolph, M. F., Wong, P. C., Wang, D. and Tian, Y. (2012), "A plasticity model to assess the keying of plate anchors", Geotechnique, 62(9), 825-836. https://doi.org/10.1680/ geot.12.OG.009.
  4. Cui, C.Y., Meng, K., Wu, Y.J., Chapman, D. and Liang, Z.M. (2018), "Dynamic response of pipe pile embedded in layered visco-elastic media with radial inhomogeneity under vertical excitation", Geomech. Eng., 16(6), 609-618. https://doi.org/10.12989/gae.2018.16.6.609.
  5. Cui, C.Y., Liang, Z.M., Xu, C.S., Xin, Y. and Wang, B.L. (2023), "Analytical solution for horizontal vibration of end-bearing single pile in radially heterogeneous saturated soil", Appl. Math. Model., 116, 65-83. https://doi.org/10.1016/j.apm.2022.11.027.
  6. Cui, C.Y., Meng, K., Xu, C.S., Wang, B.L. and Xin, Y. (2022), "Vertical vibration of a floating pile considering the incomplete bonding effect of the pile-soil interface", Comput. Geotech., 150, 104894. https://doi.org/10.1016/j.compgeo.2022.104894.
  7. Demir, A. and Ok, B. (2015), "Uplift response of multi-plate helical anchors in cohesive soil", Geomech. Eng., 8(4), 615-630. https://doi.org/10.12989/gae.2015.8.4.615.
  8. Dou, Y. and Yu, L. (2018), "Numerical investigations of the effects of different design angles on the motion behaviour of drag anchors", Appl. Ocean Res., 76, 199-210. https://doi.org/10.1016/ j.apor.2018.05.003.
  9. Dutta, S., Hawlader, B. and Phillips, R. (2015), "Finite element modeling of partially embedded pipelines in clay seabed using Coupled Eulerian-Lagrangian method", Can. Geotech. J., 52(1), 58-72. https://doi.org/10.1139/cgj-2014-0045.
  10. Gao, P., Duan, M.L., Gao, Q., Xu, J. and Huang, J. (2019), "A prediction method for anchor penetration depth in clays", Ships Offshore Struct., 11(7), 782-789. https://doi.org/10.1080/17445302.2015.1116244.
  11. GB 50217. (2018), "Standard for design of cables of electric power engineering", Ministry of Housing and Urban-Rural Development of the People's Republic of China.
  12. Han, C., Chen, X. and Liu, J. (2019), "Physical and numerical modeling of dynamic penetration of ship anchor in clay", J. Waterway, Port, C-ASCE, 145(1):04018030. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000490.
  13. Kim, Y.H., Hossain, M.S., Wang, D. and Randolph, M.F. (2015), "Numerical investigation of dynamic installation of torpedo anchors in clay", Ocean Eng., 108, 820-832. https://doi.org/10.1016/j.oceaneng.2015.08.033.
  14. Kong, G.Q., Fang, J.C., Lv, Z.X. and Yang, Q. (2023a), "Effects of pile and soil properties on thermally induced mechanical responses of energy piles", Comput. Geotech., 154, 105176. https://doi.org/10.1016/ j.compgeo. 2022.105176.
  15. Kong, G.Q., Hu, S.J., and Yang Q. (2023b), "Uncertainty method and sensitivity analysis to assess building energy of underground metro station", Sustain. Cities Soc., 92, 104504. https://doi.org/10.1016/j.scs.2023. 104504.
  16. Kong, G.Q., Wu, D. and Wei, Y.Q. (2023c), "Experimental and numerical investigations on the energy and structural performance of a full-scale energy utility tunnel", Tunn. Undergr. Sp. Tech., 139, 105208. https://doi.org/10.1016/j.tust.2023.105208.
  17. Lai, Y., Huang, Y.H., Chen, C. and Zhu, B. (2020), "Free-fall penetration behaviors of a new dynamically installed plate anchor in marine clay", China Ocean Eng., 34(6), 795-805. https://doi.org/ 10.1007/s13344-020-0072-y.
  18. Lai, Y., Zhu, B., Chen, C. and Huang, Y.H. (2021), "Dynamic installation behaviors of a new hybrid plate anchor in layered marine clay", China Ocean Eng., 35(5), 736-749. https://doi.org/ 10.1007/s13344-021-0065-5.
  19. Li, G., Zhang, J., Niu, J., Liu, J. and Yang, Y. (2022), "Dynamic penetration process of torpedo anchors into sand foundation", J. Mar. Sci. Eng., 10(8), 1097. https://doi.org/10.3390/jmse10081097.
  20. Liu, J., Liu, L. and Han, C. (2022), "Innovative booster for dynamic installation of OMNI-Max anchor in clay: numerical modeling", J. Waterway, Port, C-ASCE, 148(1), 04021043. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000691.
  21. Liu, H., Zhang, W., Zhang, X. and Liu, C. (2010), "Experimental investigation on the penetration mechanism and kinematic behavior of drag anchors", Appl. Ocean Res., 32(4), 434-442. https://doi.org/ 10.1016/j.apor.2010.09.004.
  22. Lu, H., Shi, J.W., Ng, C.W.W. and Lv, Y.R. (2020), "Three-dimensional centrifuge modeling of the influence of side-by-side twin tunneling on a piled raft", Tunn. Undergr. Sp. Tech., 2020, 103: 103486. https://doi.org/10.1016/j.tust.2020.103486.
  23. Lu, H., Shi, J.W., Wang, Y. and Wang, R. (2019), "Centrifuge modeling of tunneling-induced ground surface settlement in sand", Undergr. Space, 4, 302-309. https://doi.org/10.1016/j.undsp.2019.03.007.
  24. Meng, K., Cui, C.Y., Liang, Z.M., Li, H.J. and Pei, H.F. (2020), "A new approach for longitudinal vibration of a large-diameter floating pipe pile in visco-elastic soil considering the three-dimensional wave effects", Comput. Geotech., 128, 103840. https://doi-org/10.1016/j.compgeo.2020.103840.
  25. Mohee, F.M., Al-Mayah, A. and Plumtree, A. (2016), "Anchors for CFRP plates: State-of-the-art review and future potential", Compos. Part B: Eng., 90, 432-442. https://doi.org/10.1016/j.compositesb. 2016.01.011.
  26. Moore, E., Haigh, S.K. and Eichhorn, G.N. (2021), "Anchor penetration depth in sandy soils and its implications for cable burial", Ocean Eng., 235, 109411. https://doi.org/10.1016/j.oceaneng.2021.109411.
  27. Mustafina, A. (2015). Anchor damage assessment of subsea pipelines-optimization of design methodology, Master's thesis, University of Stavanger, Norway.
  28. Neubecker, S.R. and Randolph, M.F. (1995), "Profile and frictional capacity of embedded anchor chains", J. Geotech. Eng., 121(11), 797-803. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:11(797).
  29. Qiu, G., Henke, S. and Grabe, J. (2011), "Application of a Coupled Eulerian-Lagrangian approach on geomechanical problems involving large deformations", Comput. Geotech., 38(1), 30-39. https://doi.org/10.1016/j.compgeo.2010.09.002.
  30. Shi, C. and Wang, Y. (2022). "Assessment of reclamation-induced consolidation settlement considering stratigraphic uncertainty and spatial variability of soil properties", Can. Geotech. J., 59(7), 1215-1230. https://doi.org/10.1139/cgj-2021-0349.
  31. Shi, C. and Wang, Y. (2021), "Training image selection for development of subsurface geological cross-section", Eng. Geol., 295(20), 106415. https://doi.org/10.1016/j.enggeo.2021.106415.
  32. Shi, C. and Wang, Y. (2023), "Data-driven Spatio-temporal Analysis of Consolidation for Rapid Reclamation", Geotechnique, https://doi.org/10.1680/jgeot.22.00016.
  33. Shi, J.W., Wang, J.P., Chen Y.H., Shi, C., Lu, H., Ma, S.K. and Fan, Y.B. (2023), "Physical modeling of the influence of tunnel active face instability on existing pipelines", Tunn. Undergr. Sp. Tech., 140, 105281. https://doi.org/10.1016/j.tust.2023.105281.
  34. Shi, J.W., Wei, J.Q., Ng, C.W.W., Lu, H., Ma, S.K., Shi, C. and Li, P. (2022a), "Effects of construction sequence of double basement excavations on an existing floating pile", Tunn. Undergr. Sp. Tech., 119, 104230. https://doi.org/10.1016/j.tust.2021.104230.
  35. Shi, J.W., Chen Y.H., Lu, H., Ma, S.K. and Ng, C.W.W. (2022b), "Centrifuge modeling of the influence of joint stiffness on pipeline response to underneath tunnel excavation", Can. Geotech. J., 59(9), 1568-1586. https://doi.org/10.1139/cgj-2020-0360.
  36. Wang, W., Yan, X., Li, S., Zhang, L., Ouyang, J. and Ni, X. (2021), "Failure of submarine cables used in high-voltage power transmission: Characteristics, mechanisms, key issues and prospects", IET Generation, Transmission & Distribution, 15(9), 1387-1402. https://doi.org/10.1049/gtd2.12117.
  37. Wang, Y., Lyu, B., Shi, C. and Hu, Y. (2023), "Non-parametric simulation of random field samples from incomplete measurements using generative adversarial networks", Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 1-25. https://doi.org/10.1080/17499518.2023.2222383.
  38. Yue, L., Wang, Q., Wang, W., Wang, Y. and Lv, J. (2020), "Numerical simulation analysis of the characteristics of torpedo anchor penetration in cohesive Soil", J. Coast. Res., 109, 139-144. https://doi.org/10.2112/JCR-SI109-023.1.
  39. Zhao, Y. and Liu, H. (2016), "Numerical implementation of the installation/mooring line and application to analyzing comprehensive anchor behaviors", Appl. Ocean Res., 54, 101-114. https://doi.org/10.1016/j.apor.2015.10.007.
  40. Zhou, Y., Kong, G.Q. and Li, J.J. (2023), "Performances of belled pile influenced by pile head freedom response to a cooling-heating cycle", J. Geotech. Geoenviron. Eng., 149(2), 04022133. https://doi.org/10.1061/JGGEFK.GTENG-10407.