DOI QR코드

DOI QR Code

Evaluation of the geogrid-various sustainable geomaterials interaction by direct shear tests

  • Bahadir Ok (Department of Civil Engineering, Alparslan Turkes Science and Technology University) ;
  • Huseyin Colakoglu (Department of Civil Engineering, Alparslan Turkes Science and Technology University) ;
  • Umud Dagli (Department of Civil Engineering, Alparslan Turkes Science and Technology University)
  • 투고 : 2022.12.20
  • 심사 : 2023.05.16
  • 발행 : 2023.07.25

초록

In order to prevent environmental pollution, initiatives to increase the sustainability of resources are supported by society. However, the performance of recycled materials does not generally match that of natural materials. This study looks into the use of geogrid to improve various types of recycled aggregates. For this purpose, five different recycled aggregates were created by recycling wastes from the construction industry. Besides, direct shear tests (DS tests) were carried out on these recycled aggregates to determine their shear strengths. Following that, a triaxial geogrid was placed in the recycled aggregates to provide reinforcement, and the DS tests were conducted on the reinforced recycled aggregates. The results of the tests were also compared to those of tests performed on natural aggregates (NA). In conclusion, it was found that the recycled aggregates have lower shear strengths than the NA. Nonetheless, when reinforced with geogrid, the shear strength of the recycled concrete aggregates (RCA) and construction and demolition wastes (CDW) exceeded that of the NA. Furthermore, the geogrid reinforcement increased the shear strength of the recycled crushed bricks (CB), though not to the level of the NA.

키워드

참고문헌

  1. Abu-Farsakh, M.Y. and Chen, Q. (2011), "Evaluation of geogrid base reinforcement in flexible pavement using cyclic plate load testing", Int. J. Pavement Eng., 12(3), 275-288. https://doi.org/10.1080/10298436.2010.549565.
  2. Akpinar, P. and Hiba Al Attar, H.A. (2021), "A case study on the viability of using increased quantities of recycled concrete aggregates in structural concrete for extending environmental conservation in North Cyprus", Environ. Earth Sci., 80, 367. https://doi.org/10.1007/s12665-021-09655-x .
  3. Alias, R., Kasa, A. and Taha, M.R. (2014), "Particle size effect on shear strength of granular materials in direct shear test", Int. J. Civil Archit. Struct. Constr. Eng., 8(11), 1144-1147.
  4. Altay, G., Kayadelen, C., Canakci, H., Bagriacik, B., Ok, B., and Oguzhanoglu, M.A (2021), "Experimental investigation of deformation behavior of geocell retaining walls", Geomech. Eng., 27(5), 419-431. https://doi.org/10.12989/gae.2021.27.5.419.
  5. Arulrajah, A., Piratheepan, J., Disfani, M.M. and Bo, M.W. (2013a), "Geotechnical and geoenvironmental properties of recycled construction and demolition materials in pavement subbase applications", J. Mater Civil Eng., 25(8), 1077-1088. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000652.
  6. Arulrajah, A., Rahman, M.A., Piratheepan, J., Bo, M.W. and Imteaz, M.A. (2013b), "Interface shear strength testing of geogrid-reinforced construction and demolition materials", Adv. Civil Eng. Mater., 2(1), 189-200. https://doi.org/10.1520/ACEM20120055.
  7. Arulrajah, A., Disfani, M.M., Horpibulsuk, S., Suksiripattanapong, C. and Prongmanee, N. (2014a), "Physical properties and shear strength responses of recycled construction and demolition materials in unbound pavement base/subbase applications", Constr. Build. Mater., 58, 245-257. https://doi.org/10.1016/j.conbuildmat.2014.02.025.
  8. Arulrajah, A., Rahman, M.A., Piratheepan, J., Bo, M.W. and Imteaz, M.A. (2014b), "Evaluation of interface shear strength properties of geogrid-reinforced construction and demolition materials using a modified large-scale direct shear testing apparatus", J. Mater. Civil Eng., 26(5), 974-982. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000897.
  9. Arulrajah, A., Mohammadinia, A., Phummiphan, I., Horpibulsuk, S. and Samingthong, W. (2016), "Stabilization of recycled demolition aggregates by geopolymers comprising calcium carbide residue, fly ash and slag precursors", Constr. Build. Mater., 114, 864-873. https://doi.org/10.1016/j.conbuildmat.2016.03.150.
  10. Athanasopoulos, G.A. (1993), "Effect of particle size on the mechanical behaviour of sand-geotextile composites", Geotext. Geomembranes, 12, 255-273. https://doi.org/10.1016/0266-1144(93)90029-N
  11. ASTM D 1241-07 (2007), Standard specification for materials for soil-aggregate subbase, base, and surface courses, ASTM International, West Conshohocken, USA.
  12. ASTM D 3080 (2011), Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions, ASTM International, West Conshohocken, USA.
  13. ASTM D7382 (2008), Test methods for determination of maximum dry unit weight and water content range for effective compaction of granular soils using a vibrating hammer, ASTM International, West Conshohocken, USA.
  14. Bahaaddini, M. (2017), "Effect of boundary condition on the shear behaviour of rock joints in the direct shear test", Rock Mech. Rock Eng., 50(5), 1141-1155. https://doi.org/10.1007/s00603-016-1157-z.
  15. Bareither, C.A., Benson, C.H. and Edil, T.B. (2008), "Comparison of shear strength of sand backfills measured in small-scale and large-scale direct shear tests", Can. Geotech. J., 45(9), 1224-1236. https://doi.org/10.1139/T08-058.
  16. Basudhar, P.K. (2010), "Modeling of soil-woven geotextile interface behavior from direct shear test results", Geotext. Geomembranes, 28(4), 403-408. https://doi.org/10.1016/j.geotexmem.2009.12.005.
  17. British Standards Institution BS EN 933-11:2009 (2009), Tests for geometrical properties of aggregates part 11: Classification test for the constituents of coarse recycled aggregate, London, United Kingdom.
  18. Bruschi, G.J., Secco, M.P., Sousa, L., Briga‑Sa, A. and Cristelo, N. (2022), "Development of facade panels with optimised thermal performance from alkali‑activated stone‑cutting waste", Environ. Earth Sci., 81, 331. https://doi.org/10.1007/s12665-022-10452-3.
  19. Cabalar, A.F., Abdulnafaa, M.D. and Karabash, Z. (2016), "Influences of various construction and demolition materials on the behavior of a clay", Environ. Earth Sci., 75, 841. https://doi.org/10.1007/s12665-016-5631-4.
  20. Cerni, G., Cardone, F. and Bocci, M. (2012), "Permanent deformation behaviour of unbound recycled mixtures", Constr. Build. Mater., 37, 573-580. http://dx.doi.org/10.1016/j.conbuildmat.2012.07.062.
  21. Demir, A., Laman, M., Yildiz, A. and Ornek, M., (2013), "Large scale field tests on geogrid-reinforced granular fill underlain by clay soil", Geotext. Geomembranes, 38, 1-15. https://doi.org/10.1016/j.geotexmem.2012.05.007.
  22. Estevez-Ventosa, X., Castro-Filgueira, U., Gonzalez-Fernandez, M,A., Garcia-Bastante, F., Mas-Ivars, D. and Alejano, L.R. (2022), "Scale effects on triaxial peak and residual strength of granite and preliminary PFC3D models", Geomech. Eng., 31(5), 461-476. https://doi.org/10.12989/gae.2022.31.5.461.
  23. Giroud, J.P. and Han, J. (2004), "Design Method for geogrid-reinforced unpaved roads. I. development of design method", J. Geotech. Geoenviron. Eng., 130(8), 775-786. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:8(775).
  24. Han, J. and Thakur, J.K. (2014), "Sustainable roadway construction using recycled aggregates with geosynthetics", Sustainable Cities and Society, 14, 342-350. http://dx.doi.org/10.1016/j.scs.2013.11.011.
  25. Han, B., Ling, J., Shu, X., Gong, H. and Huang, B. (2017), "Laboratory investigation of particle size effects on the shear behavior of aggregate-geogrid interface", Constr. Build. Mater., 158, 1015-1025. https://doi.org/10.1016/j.conbuildmat.2017.10.045.
  26. Infante, D.J.U., Martinez, G.M.A., Arrua, P.A. and Eberhardt, M. (2016), "Shear strength behavior of different geosynthetic reinforced soil structure from direct shear test", Int. J. Geosynth. Ground Eng., 2(17), 1-16. https://doi.org/10.1007/s40891-016-0058-2.
  27. Jimenez, J.R., Ayuso, J., Agrela, F., Lopez, M. and Galvin, A.P. (2012), "Utilisation of unbound recycled aggregates from selected CDW in unpaved rural roads", Resour. Conserv. Recy., 58, 88-97. https://doi.org/10.1016/j.resconrec.2011.10.012.
  28. Kayadelen, C., Onal, T.O. and Altay, G. (2018), "Experimental study on pull-out response of geogrid embedded in sand", Measurement, 17, 390-396. https://doi.org/10.1016/j.measurement.2017.12.024.
  29. Kim, D. and Ha, S. (2014), "Effects of particle size on the shear behavior of coarse grained soils reinforced with geogrid", Materials, 7, 963-979. https://doi.org/10.3390/ma7020963.
  30. Lee, S., Chang I., Chung, M., Kim, Y. and Kee, J. (2017), "Geotechnical shear behavior of Xanthan Gum biopolymer treated sand from direct shear testing", Geomech. Eng., 12(5), 831-847. https://doi.org/10.12989/gae.2017.12.5.831.
  31. Li, F., Peng, F., Tan, Y., Kongkitkul, W. and Siddiquee, M. (2012), "FE simulation of viscous behavior of geogrid-reinforced sand under laboratory-scale plane strain-compression testing", Geotext. Geomembranes, 31, 72-80. https://doi.org/10.1016/j.geotexmem.2011.09.005.
  32. Liu, C.N., Ho, Y.H. and Huang, J.W. (2009), "Large scale direct shear tests of soil/pet-yarn geogrid interfaces", Geotext. Geomembranes, 27(1), 19-30. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000150.
  33. McDowell, G.R., Harireche, O., Konietzky, H., Brown, S.F. and Thom, N.H. (2006) "Discrete element modelling of geogrid-reinforced aggregates", Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 159(1), 35-48. https://doi.org/10.1680/geng.2006.159.1.35
  34. Mehrjardi, G.T., Azizi, A., Haji-Azizi, A. and Asdollafardi, G. (2020), "Evaluating and Improving the Construction and Demolition Waste Technical Properties to Use in Road Construction", Transport. Geotech., 23, 100349. https://doi.org/10.1016/j.trgeo.2020.100349.
  35. Mohammadinia, A., Arulrajah, A., Horpibulsuk, S. and Shourijeh, P.T. (2019a), "Impact of potassium cations on the light chemical stabilization of construction and demolition wastes", Constr. Build. Mater., 203, 69-74. https://doi.org/10.1016/j.conbuildmat.2019.01.083.
  36. Mohammadinia, A., Arulrajah, A., Phummiphan, I., Horpibulsuk, S. and Mirzababaei, M. (2019b), "Flexural fatigue strength of demolition aggregates stabilized with alkali-activated calcium carbide residue", Constr. Build. Mater., 199, 115-23. https://doi.org/10.1016/j.conbuildmat.2018.12.031
  37. Naeini, S.A., Khalaj, M. and Izadi, E. (2013), "Interfacial shear strength of silty sand-geogrid composite", Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, 166(1), 67-75. https://doi.org/10.1680/geng.10.00118.
  38. Ok, B., Sarici, T., Talaslioglu, T. and Yildiz, A. (2020), "Geotechnical properties of recycled construction and demolition materials for filling applications", Transport. Geotech., 24, 100380. https://doi.org/10.1016/j.trgeo.2020.100380.
  39. Palmeira, E.M. and Milligan, G.W.E. (1989), "Scale effects in direct shear tests on sand", Proceedings of the 12 International Conference on Soil Mechanics and Foundation Engineering, Rio de Janeiro, Brazil, August.
  40. Park, S., Hwang C., Choi, H., Son, Y. and Ko, T.Y. (2022), "Experimental study for application of the punch shear test to estimate adfreezing strength of frozen soil-structure interface", Geomech. Eng., 29(3), 281-290. https://doi.org/10.12989/gae.2022.29.3.281.
  41. Perera, S., Arulrajah, A., Wong, Y.C., Horpibulsuk, S. and Maghool, F. (2019), "Utilizing recycled PET blends with demolition wastes as construction materials", Constr. Build. Mater., 221, 200-209. https://doi.org/10.1016/j.conbuildmat.2019.06.047.
  42. Rahmani, H. and Panah, A.K. (2020), "Effect of particle size and saturation conditions on the breakage factor of weak rockfill materials under one-dimensional compression testing", Geomech. Eng., 21(4), 315-326. https://doi.org/10.12989/gae.2020.21.4.315.
  43. Rahman, M.A., Arulrajah, A., Piratheepan, J., Bo, M.W. and Imteaz, M.A. (2014), "Resilient modulus and permanent deformation responses of geogrid-reinforced construction and demolition materials", J. Mater. Civil Eng., 26(3), 512-519. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000824.
  44. Ren, F., Wang, G. and Ye, B. (2018), "An analytical analysis of the pullout behaviour of reinforcements of MSE structures", Geomech. Eng., 14(3), 233-240. https://doi.org/10.12989/gae.2018.14.3.233.
  45. Vieira, C.S. and Pereira, P.M. (2015a), "Use of recycled construction and demolition materials in geotechnical applications: a review", Resour. Conserv. Recy., 103, 192-204. https://doi.org/10.1016/j.resconrec.2015.07.023.
  46. Vieira, C.S. and Pereira, P.M. (2015b), "Damage induced by recycled construction and demolition wastes on the short-term tensile behaviour of two geosynthetics", Transport. Geotech., 4, 64-75. https://doi.org/10.1016/j.trgeo.2015.07.002.
  47. Vieira, C.S. and Pereira, P.M. (2016), "Interface shear properties of geosynthetics and construction and demolition waste from large-scale direct shear tests", Geosynth. Int., 23(1), 62-70. https://doi.org/10.1680/jgein.15.00030
  48. Safa, M, Maleka, A., Arjomand, M., Khorami, M. and Shariati, M. (2019)," Strain rate effects on soil-geosynthetic interaction in fine-grained soil", Geomech. Eng., 19(6), 533-542. https://doi.org/10.12989/gae.2019.19.6.533.
  49. Santos, E.C.G., Palmeira, E.M. and Bathurst, R.J. (2013), "Behaviour of a geogrid reinforced wall built with recycled construction and demolition waste backfill on a collapsible foundation", Geotext. Geomembranes, 39, 9-19. http://dx.doi.org/10.1016/j.geotexmem.2013.07.002
  50. Saribas, I. and Ok, B. (2020), "Seismic performance of recycled aggregate-filled cantilever reinforced concrete retaining walls", Adv. Mech. Eng., 11(4), 1-11. https://doi.org/10.1177/1468794106065007.
  51. Stacho, J., Sulovska, M. and Slavik, I. (2020), "Determining the shear strength properties of a soil-geogrid interface using a large-scale direct shear test apparatus", Periodica Polytechnica Civil Eng., 64(4), 989-998. https://doi.org/10.3311/PPci.15766.
  52. Stathas, D., Wang, J.P. and Ling, H.I. (2017), "Model geogrids and 3D printing", Geotext. Geomembranes, 45(6), 688-696. https://doi.org/10.1016/j.geotexmem.2017.07.006.
  53. Sweta, K. and Hussaini, S.K.K. (2018), "Effect of shearing rate on the behavior of geogrid-reinforced railroad ballast under direct shear conditions", Geotext. Geomembranes, 46, 251-256. https://doi.org/10.1016/j.geotexmem.2017.12.001.
  54. Tan, S.A., Chew, S.H. and Wong, W.K. (1998), "Sand-geotextile interface shear strength by torsional ring shear tests", Geotext. Geomembranes, 16(3), 161-174. https://doi.org/10.1016/S0266-1144(98)00007-7.
  55. Tu, Y., Wang, X., Lan, Y., Wang, J. and Liao, Q. (2022), "Mechanical properties and failure mechanism of gravelly soils in large scale direct shear test using DEM", Geomech. Eng., 30(1), 27-44. https://doi.org/10.12989/gae.2022.30.1.027.
  56. Wang, J., Guo, J., Bai, J. and Wu, X. (2018), "Shear strength of sandstone-mudstone particle mixture from direct shear test", Environ. Earth Sci., 77, 442. https://doi.org/10.1007/s12665-018-7622-0.
  57. Yaghoubi, E., Arulrajah, A., Wong, Y.C. and Horpibulsuk, S. (2017), "Stiffness properties of recycled concrete aggregate with polyethylene plastic granules in unbound pavement applications", J. Mater. Civil Eng., 29(4). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001821.