DOI QR코드

DOI QR Code

Experimental investigation of blocking mechanism for grouting in water-filled karst conduits

  • Zehua Bu (Geotechnical and Structural Engineering Research Center, Shandong University) ;
  • Zhenhao Xu (Geotechnical and Structural Engineering Research Center, Shandong University) ;
  • Dongdong Pan (Geotechnical and Structural Engineering Research Center, Shandong University) ;
  • Haiyan Li (Geotechnical and Structural Engineering Research Center, Shandong University) ;
  • Jie Liu (Geotechnical and Structural Engineering Research Center, Shandong University) ;
  • Zhaofeng Li (Geotechnical and Structural Engineering Research Center, Shandong University)
  • Received : 2021.11.24
  • Accepted : 2023.05.16
  • Published : 2023.07.25

Abstract

Aiming at the grouting treatment of water inflow in karst conduits, a visualized experiment system for conduit-type grouting blocking was developed. Through the improved water supply system and grouting system, and the optimized multisource information monitoring system, the real-time observation of diffusion and deposition of slurry, and the data acquisition of pressure and velocity during the whole process of grouting were realized, which breaks through the problem that the monitoring element is easy to fail due to slurry adhesion in conventional test system. Based on the grouting experiments in static and flowing water, the diffusion and deposition behavior of the quick-setting slurry under different working conditions were analyzed. The temporal and spatial variation behavior of the pressure and velocity were studied, and the blocking mechanism of the grouting were further revealed. The results showed that: (1) Under the flowing water condition, the counter-flow diffusion distance of slurry was negatively correlated with the flow water velocity and the volume ratio of cement and sodium silicate (C-S ratio), and positively correlated with the grouting volume. The slurry deposition thickness was negatively correlated with the flowing water velocity, and positively correlated with the grouting volume and C-S ratio. (2) The pressure increased slowly before blocking of the flowing water and rapidly after blocking in karst conduits. (3) With the continuous progress of grouting, the flowing water velocity decreased slowly first, then significantly, and finally tended to be stable. According to the research results, some engineering recommendations were put forward for the grouting treatment of the conduit-type water inflow disaster, which has been successfully applied in the treatment project of the China Resources Cement (Pingnan) Limestone Mine. This study provided some guidance and reference for the parameter optimization of grouting for the treatment projects of water inflow in karst conduits.

Keywords

Acknowledgement

We would like to acknowledge the financial support from the National Natural Science Foundation of China (Grant No. s: 52022053, 52109129), the National Natural Science Foundation of Shandong Province (Grant No.: ZR2021QE163), the Natural Science Foundation of Jiangsu Province (Grant No.: BK20210114).

References

  1. Bauer, S., Liedl, R. and Sauter, M. (2003), "Modeling of karst aquifer genesis: influence of exchange flow", Water Resour. Res., 39(10), 371-375. http://doi.org/10.1029/2003WR002218.
  2. Birk, S., Liedl, R. and Sauter, M. (2004), "Identification of localised recharge and conduit flow by combined analysis of hydraulic and physico-chemical spring responses (Urenbrunnen, SW-Germany)", J. Hydrol., 286(1-4), 179-193. http://doi.org/10.1016/j.jhydrol.2003.09.007.
  3. Bu, Z., Zhang, Y., Pan, D., Jin, Q., Li, Z. and Xu, Z. (2023), "Tidal effect on grouting and blocking of flowing water in Karst fractures: Numerical implementation and its application", Int. J. Geomech., 23(6), 04023077. http://doi.org/10.1061/IJGNAI.GMENG-7982.
  4. Deng, S., Wang, X., Yu, J., Zhang, Y., Liu, Z. and Zhu, Y. (2018), "Simulation of grouting process in rock masses under a dam foundation characterized by a 3D fracture network", Rock Mech. Rock Eng., 51(6), 1801-1822. http://doi.org/10.1016/j.jhydrol.2019.02.044.
  5. Fidelibus, C. and Lenti, V. (2012), "The propagation of grout in pipe networks", Comput. Geosci., 45, 331-336. http://doi.org/10.1016/j.cageo.2011.11.015.
  6. Field, M.S. and Nash, S.G. (2011), "Risk assessment methodology for karst aquifers: (1) estimating karst conduit-flow parameters", Environ. Monit. Assessment, 47(1), 1-21. http://doi.org/10.1023/A:1005753919403.
  7. Gustafson, G., Claesson, J. and Fransson, A. (2013), "Steering parameters for rock grouting", J. Appl. Math., 1-9. http://doi.org/10.1155/2013/269594.
  8. Hu, W. (2013), "Grout diffusion and plugging mechanism in rockmass channel and fissures under hydrodynamic condition", Doctoral dissertation, China University of Mining and Technology.
  9. Huang, M., Xu, C.S., Zhan, J.W. and Wang, J.B. (2017), "Comparative study on dynamic properties of argillaceous siltstone and its grouting-reinforced body", Geomech. Eng., 13(2), 333-352. https://doi.org/10.12989/gae.2017.13.2.333.
  10. Huang, S., Pei, Q., Ding, X., Zhang, Y., Liu, D., He, J. and Bian, K. (2020), "Grouting diffusion mechanism in an oblique crack in rock masses considering temporal and spatial variation of viscosity of fast-curing grouts", Geomech. Eng., 23(2), 151-163. https://doi.org/10.12989/gae.2020.23.2.151.
  11. Jerme, P. and Luetscher, M. (2008), "Inference of the structure of karst conduits using quantitative tracer tests and geological information: example of the swiss jura", J. Hydrol., 16(5), 951-967. http://doi.org/10.1007/s10040-008-0281-6.
  12. Jin, Q., Bu, Z., Pan, D., Gao, X., Yang, P., Li, H., Li, Z. and Xu, Z. (2023), "Tidal effect on grouting in karst fracture with flowing water: Experimental investigation and its application", KSCE J. Civil Eng., 27(2), 495-507. https://doi.org/10.1007/s12205-022-0284-1.
  13. Jin, Q., Bu, Z., Pan, D., Li, H., Li. Z. and Zhang, Y. (2021), "An integrated evaluation method for the grouting effect in Karst Areas", KSCE J. Civil Eng., 25(8), 3186-3197. http://doi.org/10.1007/s12205-021-1864-1.
  14. Kim, Y. and Moon, J.S. (2020), "Change of groundwater inflow by cutoff grouting thickness and permeability coefficient", Geomech. Eng., 21(2), 165-170. https://doi.org/10.12989/gae.2020.21.2.165.
  15. Li, H., Liu, J., Wu, J., Xu, Z. and Li, Z. (2021a), "Grouting sealing method of flow-control speed-down in karst pipelines and its engineering application", Tunn. Undergr. Sp. Tech., 108, 103695. http://doi.org/10.1016/j.tust.2020.103695.
  16. Li, H., Zhang, Y., Wu, J., Zhang, X., Zhang, L. and Li, Z. (2020a), "Grouting sealing mechanism of water gushing in karst pipelines and engineering application", Constr. Build. Mater., 254, 119250. http://doi.org/10.1016/j.conbuildmat.2020.119250.
  17. Li, H.Y. (2018), "Study on plugging mechanism and technology of large-flow Karst pipe water gushing", Doctoral dissertation, Shandong University.
  18. Li, L., Xiang, Z.C., Zou, J.F. and Wang, F. (2019), "An improved model of compaction grouting considering three-dimensional shearing failure and its engineering application", Geomech. Eng., 19(3), 217-227. https://doi.org/10.12989/gae.2019.19.3.217.
  19. Li, P., Zhang, Q., Zhang, X., Li, S., Li, X. and Zuo, J. (2017), "Grouting diffusion characteristics in faults considering the interaction of multiple grouting", Int. J. Geomech., 17(5). http://doi.org/10.1061/(ASCE)GM.1943-5622.0000815.
  20. Li, S., Han, W., Zhang, Q., Liu, R. and Weng, X. (2013), "Research on time-dependent behavior of viscosity of fast curing grouts in underground construction grouting", Chinese J. Rock Mech. Eng., 32(1), 1-7. http://doi.org/10.1016/0006-8993(92)90961-8.
  21. Li, S., Wang, X., Xu, Z., Mao, D. and Pan, D. (2021b), "Numerical investigation of hydraulic tomography for mapping karst conduits and its connectivity", Eng. Geol., 281(6), 105967. http://doi.org/10.1016/j.enggeo.2020.105967.
  22. Li, S.C., Pan, D.D., Xu, Z.H., Lin, P. and Zhang, Y.C. (2020b), "Numerical simulation of dynamic water grouting using quick-setting slurry in rock fracture: the sequential diffusion and solidification (SDS) method", Comput. Geotech., 122, 103497. http://doi.org/10.1016/j.compgeo.2020.103497.
  23. Li, S.C., Xu, Z.H., Huang, X., Lin, P., Zhao, X.C., Zhang, Q.S., Yang, L., Zhang, X., Sun, H.F. and Pan, D.D. (2018), "Classification, geological identification, hazard mode and typical case studies of hazard-causing structures for water and mud inrush in tunnels", Chinese J. Rock Mech. Eng., 37(5), 1041-1069. http://doi.org/10.13722/j.cnki.jrme.2017.1332.
  24. Liang, Y., Sui, W. and Qi, J. (2019), "Experimental investigation on chemical grouting of inclined fracture to control sand and water flow", Tunn. Undergr. Sp. Tech., 83, 82-90. http://doi.org/10.1016/j.tust.2018.09.038.
  25. Liedl, R., Sauter, M., Huckinghaus, D., Clemens, T. and Teutsch, G. (2003), "Simulation of the development of karst aquifers using a coupled continuum pipe flow model", Water Resour. Res., 39(3). http://doi.org/10.1029/2001wr001206.
  26. Liu, R.T. (2012), "Study on diffusion and plugging mechanism of quick setting cement based slurry in underground dynamic water Grouting and Its Application", Doctoral dissertation, Shandong University. http://doi.org/10.7666/d.y2184237.
  27. Mohammadi, Z. and Illman, W. A. (2019), "Detection of karst conduit patterns via hydraulic tomography: a synthetic inverse modeling study", J. Hydrol., 572, 131-147. http://doi.org/10.1016/j.jhydrol.2019.02.044.
  28. Mu, W., Li, L., Liu, X., Zhang, L., Zhang, Z., Huang, B. and Chen, Y. (2020), "Diffusion-hydraulic properties of grouting geological rough fractures with power-law slurry", Geomech. Eng., 21(4), 357-369. https://doi.org/10.12989/gae.2020.21.4.357.
  29. Murata, J. and Suzuki, K. (2010), "Study on grout flow in pipe with sliding at wall", Proceedings of the Japan Society of Civil Engineers, (384), 129-136. http://doi.org/10.2208/jscej.1987.384_129.
  30. Pan, D., Bu, Z., Li, H., Xu, Z. and Liu, J. (2022), "Experimental investigation of flow control technology for grouting and blocking of flowing water in karst conduits", KSCE J. Civil Eng., 26(8), 3440-3454. https://doi.org/10.1007/s12205-022-2129-3.
  31. Pan, D., Li, S., Xu, Z., Zhang, Y., Lin, P. and Li, H. (2019), "A deterministic-stochastic identification and modelling method of discrete fracture networks using laser scanning: Development and case study", Eng. Geol., 262, 105310. http://doi.org/10.1016/j.enggeo.2019.105310.
  32. Pan, D., Xu, Z., Lu, X., Zhou, L. and Li, H. (2020), "3D scene and geological modeling using integrated multi-source spatial data: Methodology, challenges, and suggestions", Tunn. Undergr. Sp. Tech., 100, 103393. http://doi.org/10.1016/j.tust.2020.103393.
  33. Pan, D., Zhang, Y., Bu, Z. and Xu, Z. (2023), "Numerical investigation of slurry property effect on grouting and blocking of flowing water in rock fractures", Int. J. Numer Anal. Method. Geomech., https://doi.org/10.1002/nag.3534.
  34. Pan, D.D. (2020), "Simulation analysis method and application of grouting diffusion in complex Karst fracture and pipeline", Doctoral dissertation, Shandong University.
  35. Saeidi, O., Stille, H. and Torabi, S.R. (2013), "Numerical and analytical analyses of the effects of different joint and grout properties on the rock mass groutability", Tunn. Undergr. Sp. Tech., 38, 11-25. http://doi.org/10.1016/j.tust.2013.05.005.
  36. Sha, F., Lin, C., Li, Z. and Liu, R. (2019), "Reinforcement simulation of water-rich and broken rock with Portland cement-based grout", Constr. Build. Mater., 221, 292-300. http://doi.org/10.1016/j.conbuildmat.2019.06.094.
  37. Sui, W., Liu, J., Hu, W., Qi, J. and Zhan, K. (2015), "Experimental investigation on sealing efficiency of chemical grouting in rock fracture with flowing water", Tunn. Undergr. Sp. Tech., 50, 239-249. http://doi.org/10.1016/j.tust.2015.07.012.
  38. Wang, F.T., Zhang, C., Wei, S.F., Zhang, X.G. and Guo, S.H. (2016), "Whole section anchor-grouting reinforcement technology and its application in underground roadways with loose and fractured surrounding rock", Tunn. Undergr. Sp. Tech., 51, 133-143. http://doi.org/10.1016/j.tust.2015.10.029.
  39. Xu, Y., Li, S.C. and Zhang, X. (2011), "Development of model test system for grouting simulation in flowing water and study of the diffusion form of anti-dispersion grout", Appl. Mech. Mater., 90-93, 208-212. http://doi.org/10.4028/www.scientific.net/AMM.90-93.208.
  40. Xu, Z., Liu, F., Lin, P., Shao, R. and Shi, X. (2021a), "Non-destructive, in-situ, fast identification of adverse geology in tunnels based on anomalies analysis of element content", Tunn. Undergr. Sp. Tech., 118, 104146. https:// doi.org/10.1016/j.tust.2021.104146.
  41. Xu, Z., Pan, D., Li, S., Zhang, Y., Bu, Z. and Liu, J. (2022b), "A grouting simulation method for quick-setting slurry in karst conduit: The sequential flow and solidification method", J. Rock Mech. Geotech. Eng., 14(2), 423-435. https://doi.org/10.1016/j.jrmge.2021.11.006.
  42. Xu, Z., Pan, D., Lin, P., Zhang, Q., Li, H. and Zhang, Y. (2021), "Numerical investigation of flow control technology for grouting and blocking of flowing water in karst conduits", Int. J. Numer. Anal. Method. Geomech., 45(12), 1712-1738. https://doi.org/10.1002/nag.3221.
  43. Xu, Z., Yu, T., Lin, P. and Li, S. (2023a), "Adverse geology identification through mineral anomaly analysis during tunneling: methodology and case study", Eng., https://doi.org/10.1016/j.eng.2022.09.013.
  44. Xu, Z., Zhang, Y., Pan, D. and Bu, Z. (2023b), "A novel grouting simulation method considering diffusion and loss of slurry in flowing water: Interphase Miscible-Transport Time-Tracking (IM3T) Method", Rock Mech. Rock Eng., 1-18. https://doi.org/10.1007/s00603-023-03347-7.
  45. Xu, Z.H., Bu, Z.H., Pan, D.D., Li, D.Y. and Zhang, Y.C. (2022a), "A novel numerical method for grouting simulation in flowing water considering uneven spatial and temporal distribution of slurry: Two-Fluid Tracking (TFT) method", Comput. Geotech., 147, 104756. https://doi.org/10.1016/j.compgeo.2022.104756.
  46. Zhang, Q.S., Zhang, L.Z., Liu, R.T., Li, S.C. and Zhang, Q.Q. (2017), "Grouting mechanism of quick setting slurry in rock fissure with consideration of viscosity variation with space", Tunn. Undergr. Sp. Tech., 70(NOV.), 262-273. http://doi.org/10.1016/j.tust.2017.08.016.
  47. Zhang, W., Li, S., Wei, J., Zhang, Q., Liu, R., Zhang, X. and Yin, H. (2018), "Grouting rock fractures with cement and sodium silicate grout", Carbonates and Evaporites, 33, 211-222. http://doi.org/10.1007/s13146-016-0332-3.
  48. Zhao, J., Lai. M. and Shen, Z.Z. (2005), "Improved converting permeability coefficient method and variable permeability coefficient method for seepage calculation in karst region", Chinese J. Rock Mech. Eng., 24(8), 1341-1347. http://doi.org/10.3321/j.issn:1000-6915.2005.08.011.
  49. Zheng, G., Zhang, X., Diao, Y. and Lei, H. (2016), "Experimental study on the performance of compensation grouting in structured soil", Geomech. Eng., 10(3), 335-355. http://doi.org/10.12989/gae.2016.10.3.335.
  50. Zhou, F., Sun, W., Shao, J., Kong, L. and Geng, X. (2020), "Experimental study on nano silica modified cement base grouting reinforcement materials", Geomech. Eng., 20(1), 67-73. https://doi.org/10.12989/gae.2020.20.1.067.
  51. Zou, C.J. (1992), "Study on the confluence theory of karst pipe-flow", Carsologica Sinica, 11(2): 29-40.
  52. Zou, L., Hakansson, U. and Cvetkovic, V. (2018), "Two-phase cement grout propagation in homogeneous water-saturated rock fractures", Int. J. Rock Mech. Min. Sci., 106, 243-249. http://doi.org/10.1016/j.ijrmms.2018.04.017.