Acknowledgement
We would like to acknowledge the financial support from the National Natural Science Foundation of China (Grant No. s: 52022053, 52109129), the National Natural Science Foundation of Shandong Province (Grant No.: ZR2021QE163), the Natural Science Foundation of Jiangsu Province (Grant No.: BK20210114).
References
- Bauer, S., Liedl, R. and Sauter, M. (2003), "Modeling of karst aquifer genesis: influence of exchange flow", Water Resour. Res., 39(10), 371-375. http://doi.org/10.1029/2003WR002218.
- Birk, S., Liedl, R. and Sauter, M. (2004), "Identification of localised recharge and conduit flow by combined analysis of hydraulic and physico-chemical spring responses (Urenbrunnen, SW-Germany)", J. Hydrol., 286(1-4), 179-193. http://doi.org/10.1016/j.jhydrol.2003.09.007.
- Bu, Z., Zhang, Y., Pan, D., Jin, Q., Li, Z. and Xu, Z. (2023), "Tidal effect on grouting and blocking of flowing water in Karst fractures: Numerical implementation and its application", Int. J. Geomech., 23(6), 04023077. http://doi.org/10.1061/IJGNAI.GMENG-7982.
- Deng, S., Wang, X., Yu, J., Zhang, Y., Liu, Z. and Zhu, Y. (2018), "Simulation of grouting process in rock masses under a dam foundation characterized by a 3D fracture network", Rock Mech. Rock Eng., 51(6), 1801-1822. http://doi.org/10.1016/j.jhydrol.2019.02.044.
- Fidelibus, C. and Lenti, V. (2012), "The propagation of grout in pipe networks", Comput. Geosci., 45, 331-336. http://doi.org/10.1016/j.cageo.2011.11.015.
- Field, M.S. and Nash, S.G. (2011), "Risk assessment methodology for karst aquifers: (1) estimating karst conduit-flow parameters", Environ. Monit. Assessment, 47(1), 1-21. http://doi.org/10.1023/A:1005753919403.
- Gustafson, G., Claesson, J. and Fransson, A. (2013), "Steering parameters for rock grouting", J. Appl. Math., 1-9. http://doi.org/10.1155/2013/269594.
- Hu, W. (2013), "Grout diffusion and plugging mechanism in rockmass channel and fissures under hydrodynamic condition", Doctoral dissertation, China University of Mining and Technology.
- Huang, M., Xu, C.S., Zhan, J.W. and Wang, J.B. (2017), "Comparative study on dynamic properties of argillaceous siltstone and its grouting-reinforced body", Geomech. Eng., 13(2), 333-352. https://doi.org/10.12989/gae.2017.13.2.333.
- Huang, S., Pei, Q., Ding, X., Zhang, Y., Liu, D., He, J. and Bian, K. (2020), "Grouting diffusion mechanism in an oblique crack in rock masses considering temporal and spatial variation of viscosity of fast-curing grouts", Geomech. Eng., 23(2), 151-163. https://doi.org/10.12989/gae.2020.23.2.151.
- Jerme, P. and Luetscher, M. (2008), "Inference of the structure of karst conduits using quantitative tracer tests and geological information: example of the swiss jura", J. Hydrol., 16(5), 951-967. http://doi.org/10.1007/s10040-008-0281-6.
- Jin, Q., Bu, Z., Pan, D., Gao, X., Yang, P., Li, H., Li, Z. and Xu, Z. (2023), "Tidal effect on grouting in karst fracture with flowing water: Experimental investigation and its application", KSCE J. Civil Eng., 27(2), 495-507. https://doi.org/10.1007/s12205-022-0284-1.
- Jin, Q., Bu, Z., Pan, D., Li, H., Li. Z. and Zhang, Y. (2021), "An integrated evaluation method for the grouting effect in Karst Areas", KSCE J. Civil Eng., 25(8), 3186-3197. http://doi.org/10.1007/s12205-021-1864-1.
- Kim, Y. and Moon, J.S. (2020), "Change of groundwater inflow by cutoff grouting thickness and permeability coefficient", Geomech. Eng., 21(2), 165-170. https://doi.org/10.12989/gae.2020.21.2.165.
- Li, H., Liu, J., Wu, J., Xu, Z. and Li, Z. (2021a), "Grouting sealing method of flow-control speed-down in karst pipelines and its engineering application", Tunn. Undergr. Sp. Tech., 108, 103695. http://doi.org/10.1016/j.tust.2020.103695.
- Li, H., Zhang, Y., Wu, J., Zhang, X., Zhang, L. and Li, Z. (2020a), "Grouting sealing mechanism of water gushing in karst pipelines and engineering application", Constr. Build. Mater., 254, 119250. http://doi.org/10.1016/j.conbuildmat.2020.119250.
- Li, H.Y. (2018), "Study on plugging mechanism and technology of large-flow Karst pipe water gushing", Doctoral dissertation, Shandong University.
- Li, L., Xiang, Z.C., Zou, J.F. and Wang, F. (2019), "An improved model of compaction grouting considering three-dimensional shearing failure and its engineering application", Geomech. Eng., 19(3), 217-227. https://doi.org/10.12989/gae.2019.19.3.217.
- Li, P., Zhang, Q., Zhang, X., Li, S., Li, X. and Zuo, J. (2017), "Grouting diffusion characteristics in faults considering the interaction of multiple grouting", Int. J. Geomech., 17(5). http://doi.org/10.1061/(ASCE)GM.1943-5622.0000815.
- Li, S., Han, W., Zhang, Q., Liu, R. and Weng, X. (2013), "Research on time-dependent behavior of viscosity of fast curing grouts in underground construction grouting", Chinese J. Rock Mech. Eng., 32(1), 1-7. http://doi.org/10.1016/0006-8993(92)90961-8.
- Li, S., Wang, X., Xu, Z., Mao, D. and Pan, D. (2021b), "Numerical investigation of hydraulic tomography for mapping karst conduits and its connectivity", Eng. Geol., 281(6), 105967. http://doi.org/10.1016/j.enggeo.2020.105967.
- Li, S.C., Pan, D.D., Xu, Z.H., Lin, P. and Zhang, Y.C. (2020b), "Numerical simulation of dynamic water grouting using quick-setting slurry in rock fracture: the sequential diffusion and solidification (SDS) method", Comput. Geotech., 122, 103497. http://doi.org/10.1016/j.compgeo.2020.103497.
- Li, S.C., Xu, Z.H., Huang, X., Lin, P., Zhao, X.C., Zhang, Q.S., Yang, L., Zhang, X., Sun, H.F. and Pan, D.D. (2018), "Classification, geological identification, hazard mode and typical case studies of hazard-causing structures for water and mud inrush in tunnels", Chinese J. Rock Mech. Eng., 37(5), 1041-1069. http://doi.org/10.13722/j.cnki.jrme.2017.1332.
- Liang, Y., Sui, W. and Qi, J. (2019), "Experimental investigation on chemical grouting of inclined fracture to control sand and water flow", Tunn. Undergr. Sp. Tech., 83, 82-90. http://doi.org/10.1016/j.tust.2018.09.038.
- Liedl, R., Sauter, M., Huckinghaus, D., Clemens, T. and Teutsch, G. (2003), "Simulation of the development of karst aquifers using a coupled continuum pipe flow model", Water Resour. Res., 39(3). http://doi.org/10.1029/2001wr001206.
- Liu, R.T. (2012), "Study on diffusion and plugging mechanism of quick setting cement based slurry in underground dynamic water Grouting and Its Application", Doctoral dissertation, Shandong University. http://doi.org/10.7666/d.y2184237.
- Mohammadi, Z. and Illman, W. A. (2019), "Detection of karst conduit patterns via hydraulic tomography: a synthetic inverse modeling study", J. Hydrol., 572, 131-147. http://doi.org/10.1016/j.jhydrol.2019.02.044.
- Mu, W., Li, L., Liu, X., Zhang, L., Zhang, Z., Huang, B. and Chen, Y. (2020), "Diffusion-hydraulic properties of grouting geological rough fractures with power-law slurry", Geomech. Eng., 21(4), 357-369. https://doi.org/10.12989/gae.2020.21.4.357.
- Murata, J. and Suzuki, K. (2010), "Study on grout flow in pipe with sliding at wall", Proceedings of the Japan Society of Civil Engineers, (384), 129-136. http://doi.org/10.2208/jscej.1987.384_129.
- Pan, D., Bu, Z., Li, H., Xu, Z. and Liu, J. (2022), "Experimental investigation of flow control technology for grouting and blocking of flowing water in karst conduits", KSCE J. Civil Eng., 26(8), 3440-3454. https://doi.org/10.1007/s12205-022-2129-3.
- Pan, D., Li, S., Xu, Z., Zhang, Y., Lin, P. and Li, H. (2019), "A deterministic-stochastic identification and modelling method of discrete fracture networks using laser scanning: Development and case study", Eng. Geol., 262, 105310. http://doi.org/10.1016/j.enggeo.2019.105310.
- Pan, D., Xu, Z., Lu, X., Zhou, L. and Li, H. (2020), "3D scene and geological modeling using integrated multi-source spatial data: Methodology, challenges, and suggestions", Tunn. Undergr. Sp. Tech., 100, 103393. http://doi.org/10.1016/j.tust.2020.103393.
- Pan, D., Zhang, Y., Bu, Z. and Xu, Z. (2023), "Numerical investigation of slurry property effect on grouting and blocking of flowing water in rock fractures", Int. J. Numer Anal. Method. Geomech., https://doi.org/10.1002/nag.3534.
- Pan, D.D. (2020), "Simulation analysis method and application of grouting diffusion in complex Karst fracture and pipeline", Doctoral dissertation, Shandong University.
- Saeidi, O., Stille, H. and Torabi, S.R. (2013), "Numerical and analytical analyses of the effects of different joint and grout properties on the rock mass groutability", Tunn. Undergr. Sp. Tech., 38, 11-25. http://doi.org/10.1016/j.tust.2013.05.005.
- Sha, F., Lin, C., Li, Z. and Liu, R. (2019), "Reinforcement simulation of water-rich and broken rock with Portland cement-based grout", Constr. Build. Mater., 221, 292-300. http://doi.org/10.1016/j.conbuildmat.2019.06.094.
- Sui, W., Liu, J., Hu, W., Qi, J. and Zhan, K. (2015), "Experimental investigation on sealing efficiency of chemical grouting in rock fracture with flowing water", Tunn. Undergr. Sp. Tech., 50, 239-249. http://doi.org/10.1016/j.tust.2015.07.012.
- Wang, F.T., Zhang, C., Wei, S.F., Zhang, X.G. and Guo, S.H. (2016), "Whole section anchor-grouting reinforcement technology and its application in underground roadways with loose and fractured surrounding rock", Tunn. Undergr. Sp. Tech., 51, 133-143. http://doi.org/10.1016/j.tust.2015.10.029.
- Xu, Y., Li, S.C. and Zhang, X. (2011), "Development of model test system for grouting simulation in flowing water and study of the diffusion form of anti-dispersion grout", Appl. Mech. Mater., 90-93, 208-212. http://doi.org/10.4028/www.scientific.net/AMM.90-93.208.
- Xu, Z., Liu, F., Lin, P., Shao, R. and Shi, X. (2021a), "Non-destructive, in-situ, fast identification of adverse geology in tunnels based on anomalies analysis of element content", Tunn. Undergr. Sp. Tech., 118, 104146. https:// doi.org/10.1016/j.tust.2021.104146.
- Xu, Z., Pan, D., Li, S., Zhang, Y., Bu, Z. and Liu, J. (2022b), "A grouting simulation method for quick-setting slurry in karst conduit: The sequential flow and solidification method", J. Rock Mech. Geotech. Eng., 14(2), 423-435. https://doi.org/10.1016/j.jrmge.2021.11.006.
- Xu, Z., Pan, D., Lin, P., Zhang, Q., Li, H. and Zhang, Y. (2021), "Numerical investigation of flow control technology for grouting and blocking of flowing water in karst conduits", Int. J. Numer. Anal. Method. Geomech., 45(12), 1712-1738. https://doi.org/10.1002/nag.3221.
- Xu, Z., Yu, T., Lin, P. and Li, S. (2023a), "Adverse geology identification through mineral anomaly analysis during tunneling: methodology and case study", Eng., https://doi.org/10.1016/j.eng.2022.09.013.
- Xu, Z., Zhang, Y., Pan, D. and Bu, Z. (2023b), "A novel grouting simulation method considering diffusion and loss of slurry in flowing water: Interphase Miscible-Transport Time-Tracking (IM3T) Method", Rock Mech. Rock Eng., 1-18. https://doi.org/10.1007/s00603-023-03347-7.
- Xu, Z.H., Bu, Z.H., Pan, D.D., Li, D.Y. and Zhang, Y.C. (2022a), "A novel numerical method for grouting simulation in flowing water considering uneven spatial and temporal distribution of slurry: Two-Fluid Tracking (TFT) method", Comput. Geotech., 147, 104756. https://doi.org/10.1016/j.compgeo.2022.104756.
- Zhang, Q.S., Zhang, L.Z., Liu, R.T., Li, S.C. and Zhang, Q.Q. (2017), "Grouting mechanism of quick setting slurry in rock fissure with consideration of viscosity variation with space", Tunn. Undergr. Sp. Tech., 70(NOV.), 262-273. http://doi.org/10.1016/j.tust.2017.08.016.
- Zhang, W., Li, S., Wei, J., Zhang, Q., Liu, R., Zhang, X. and Yin, H. (2018), "Grouting rock fractures with cement and sodium silicate grout", Carbonates and Evaporites, 33, 211-222. http://doi.org/10.1007/s13146-016-0332-3.
- Zhao, J., Lai. M. and Shen, Z.Z. (2005), "Improved converting permeability coefficient method and variable permeability coefficient method for seepage calculation in karst region", Chinese J. Rock Mech. Eng., 24(8), 1341-1347. http://doi.org/10.3321/j.issn:1000-6915.2005.08.011.
- Zheng, G., Zhang, X., Diao, Y. and Lei, H. (2016), "Experimental study on the performance of compensation grouting in structured soil", Geomech. Eng., 10(3), 335-355. http://doi.org/10.12989/gae.2016.10.3.335.
- Zhou, F., Sun, W., Shao, J., Kong, L. and Geng, X. (2020), "Experimental study on nano silica modified cement base grouting reinforcement materials", Geomech. Eng., 20(1), 67-73. https://doi.org/10.12989/gae.2020.20.1.067.
- Zou, C.J. (1992), "Study on the confluence theory of karst pipe-flow", Carsologica Sinica, 11(2): 29-40.
- Zou, L., Hakansson, U. and Cvetkovic, V. (2018), "Two-phase cement grout propagation in homogeneous water-saturated rock fractures", Int. J. Rock Mech. Min. Sci., 106, 243-249. http://doi.org/10.1016/j.ijrmms.2018.04.017.