DOI QR코드

DOI QR Code

Investigation of three-dimensional deformation mechanisms of existing tunnels due to nearby basement excavation in soft clay

  • Wanchun Chen (China Construction Eight Engineering Division Rail Transit Construction Co., L.T.D.) ;
  • Lixian Tang (China Construction Eight Engineering Division Rail Transit Construction Co., L.T.D.) ;
  • Haijun Zhao (China Construction Eight Engineering Division Rail Transit Construction Co., L.T.D.) ;
  • Qian Yin (Nanjing Metro) ;
  • Shuang Dong (China Construction Eight Engineering Division Rail Transit Construction Co., L.T.D.) ;
  • Jie Liu (China Construction Eight Engineering Division Rail Transit Construction Co., L.T.D.) ;
  • Zhaohan Zhu (School of Electrical Engineering, Southwest Jiaotong University) ;
  • Xiaodong Ni (Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University)
  • Received : 2022.12.30
  • Accepted : 2023.03.14
  • Published : 2023.07.25

Abstract

By conducting three-dimensional simulation with consideration of small-strain characteristics of soil stiffness, the effects of excavation geometry and tunnel cover to diameter ratio on deformation mechanisms of an existing tunnel located either at a side of basement or directly underneath the basement were systematically studied. Field measurements were used to verify the numerical model and model parameters. For basement excavated at a side of an existing tunnel, the maximum settlement and horizontal displacement of the tunnel are always observed at the tunnel springline closer to basement and tunnel crown, respectively, regardless of basement geometry. By increasing basement length and width by five times, the maximum movements of tunnel located at the side of basement and directly underneath the basement increase by 450% and 186%, respectively. Obviously, tunnel movements are more sensitive to basement length rather than basement width. For basement excavated at a side of an existing tunnel, tunnel movements at basement centerline become stable when basement length reaches 10 He (i.e., final excavation depth). Moreover, tunnel heaves due to overlying basement excavation become stable when the normalized basement length (L/He) is larger than 8.0. As tunnel cover to diameter ratio varies from 2.5 to 3.0, the maximum heave and tensile strain of tunnel due to overlying basement excavation decrease by up to 41.0% and 44.5%, respectively. If basement length is less than 8 He, the assumption of plane strain condition of basement-tunnel interaction grossly overestimates tunnel movements, and ignores tensile strain of tunnel along its longitudinal direction. Thus, three-dimensional numerical analyses are required to obtain a reasonable estimation of tunnel responses due to adjacent and overlying basement excavations in clay.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (51779083) and the Zhejiang Engineering Research Center of Intelligent Urban Infrastructure (IUI2022-ZD-02).

References

  1. Atkinson, J.H., Richardson, D. and Stallebrass, S.E. (1990), "Effect of recent stress history on the stiffness of overconsolidated soil", Geotechnique, 40(4), 531-540. https://doi.org/ 10.1680/geot.1990.40.4.531.
  2. Brinkgreve, R.B.J. and Broere, W. (2004), PLAXIS 3D Tunnel Version 2, PLAXIS by, Netherlands.
  3. Bu, F.M., Yu, W.R., Chen, L. and Wu, E.R. (2022), "Investigation of three-dimensional deformation mechanisms of box culvert due to adjacent deep basement excavation in clays", Geomech. Eng., 30(6), 565-577. https://doi.org/10.12989/gae.2022.30.6.565.
  4. Chen, L.A., Pei, W.W., Yang, Y.H. and Guo, W.L. (2022), "Three-dimensional numerical parametric study of shape effects on multiple tunnel interactions", Geomech. Eng., 31(3), 237-248. https://doi.org/ 10.12989/gae.2022.31.3.237.
  5. Cui, C.Y., Meng, K., Wu, Y.J., Chapman, D. and Liang, Z.M. (2018), "Dynamic response of pipe pile embedded in layered visco-elastic media with radial inhomogeneity under vertical excitation", Geomech. Eng., 16(6), 609-618. https://doi.org/10.12989/gae.2018.16.6.609.
  6. Cui, C.Y., Liang, Z.M., Xu, C.S., Xin, Y. and Wang, B.L (2023), "Analytical solution for horizontal vibration of end-bearing single pile in radially heterogeneous saturated soil", Appl. Math. Model., 116, 65-83. https://doi-org/10.1016/j.apm.2022.11.027.
  7. Cui, C.Y., Meng, K., Xu, C.S., Wang, B.L. and Xin, Y. (2022), "Vertical vibration of a floating pile considering the incomplete bonding effect of the pile-soil interface", Comput. Geotech., 150, 104894. https://doi.org/10.1016/j.compgeo.2022.104894.
  8. Devriendt, M., Doughty, L., Morrison, P. and Pillai, A. (2010), "Displacement of tunnels from a basement excavation in London", Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 163(3), 131-145. https://doi.org/10.1680/geng.2010.163.3.131.
  9. Forth, R.A. (2004), "Groundwater and geotechnical aspects of deep excavations in Hong Kong", Eng. Geol., 72(3-4), 253-260. https://doi.org/10.1016/ j.enggeo.2003.09.003.
  10. Ge, X.W. (2002), Response of a shield-driven tunnel to deep excavations in soft clay, Ph.D thesis, Department of Civil and Environmental Engineering, The University of Hong Kong Science and Technology, HKSAR.
  11. Hsieh, P.G. and Ou, C.Y. (1998), "Shape of ground surface settlement profiles caused by excavation", Can. Geotech. J., 35(6), 1004-1017. https://doi.org/ 10.1139/cgj-35-6-1004.
  12. Huang, X., Huang, H.W. and Zhang, D.M. (2014), "Centrifuge modelling of deep excavation over existing tunnels", Proceedings of the ICE-Geotechnical Engineering, 167(2), 3-18. https://doi.org/10.1680/geng.11.00045.
  13. Huang, S., Chen, Z., Xie, Y. and Lin, Z. (2022), "A variational approach to the analysis of excavation-induced vertical deformation in a segmental tunnel", Tunn. Undergr. Sp. Tech., 122, 104342. https://doi.org/10.1016/j.tust.2021.104342.
  14. Khabbaz, H., Gibson, R. and Fatahi, B. (2019), "Effect of constructing twin tunnels under a building supported by pile foundations in the Sydney central business district", Undergr. Space, 4(4), 261-276. https://doi.org/10.1016/j.undsp.2019.03.008.
  15. Klar, A., Elkayam, I. and Marshall, A.M. (2016), "Design oriented linearequivalent approach for evaluating the effect of tunneling on pipelines", J. Geotech. Geoenviron. Eng., 142(1), 04015062. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001376.
  16. Kong, G.Q., Hu, S.J. and Yang Q. (2023a), "Uncertainty method and sensitivity analysis to assess building energy of underground metro station", Sustain. Cities Soc., 92, 104504. https://doi.org/10.1016/j.scs.2023. 104504.
  17. Kong, G.Q., Fang, J.C., Lv, Z.X. and Yang, Q. (2023b), "Effects of pile and soil properties on thermally induced mechanical responses of energy piles", Comput. Geotech., 154, 105176. https://doi.org/10.1016/ j.compgeo. 2022.105176.
  18. Li, C.W., Li, W. and Liang, Z.R. (2018), "Design and analysis on synchronous construction of deep foundation pit on both sides of tunnels in soft soils", Chinese J. Undergr. Sp. Eng., 14(S1), 197-203. https://doi.org/10.16285/j.upe.2018.S1.031.
  19. Leung, C.F., Chow, Y.K. and Shen, R.F. (2000), "Behavior of pile subject to excavation-induced soil movement", J. Geotech. Geoenviron. Eng., 126(11), 947-954. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:11(947).
  20. Liu, B., Zhang, D.W., Yang, C. and Zhang, Q.B. (2020), "Long-term performance of metro tunnels induced by adjacent large deep excavation and protective measures in Nanjing silty clay", Tunn. Undergr. Sp. Tech., 95, 103147. https://doi.org/10.1016/j.tust.2019.103147.
  21. Liu, H.L., Li, P. and Liu, J.Y. (2011), "Numerical investigation of underlying tunnel heave during a new tunnel construction", Tunn. Undergr. Sp. Tech., 26(2), 276-283. https://doi.org/10.1016/ j.tust.2010.10.002.
  22. Liang, R.C., Wu, J., Sun, L.W., Shen, W. and Wu, W.B. (2021), "Performances of adjacent metro structures due to zoned excavation of a large-scale basement in soft ground", Tunn. Undergr. Sp. Tech., 117, 104123. https://doi.org/10.1016/j.tust.2021.104123.
  23. Mahajan, S., Ayothiraman, R. and Sharma, K.G. (2019), "A parametric study on effects of basement excavation and foundation loading on underground metro tunnel in soil", Indian Geotech. J., 49, 667-686. https://doi.org/10.1007/s40098-019-00361-x.
  24. Marshall, A.M. and Mair, R.J. (2011), "Tunneling beneath driven or jacked end-bearing piles in sand", Can. Geotech. J., 48(12), 1757-1771. https://doi.org/ 10.1139/t11-067.
  25. Meng, F.Y., Chen, R.P., Liu, Y., Wu, H.N. and Cheng, H.Z. (2023), "Impacts of reinforced wall on nearby excavation-induced ground and tunnel responses: a centrifugal and numerical study", Tunn. Undergr. Sp. Tech., 132, 104903. https://doi.org/10.1016/j.tust.2022.104903.
  26. Meng, K., Cui, C.Y., Liang, Z.M., Li, H.J. and Pei, H.F. (2020), "A new approach for longitudinal vibration of a large-diameter floating pipe pile in visco-elastic soil considering the three-dimensional wave effects", Comput. Geotech., 128, 103840. https://doi.org/10.1016/j.compgeo.2020.103840.
  27. Ng, C.W.W., Shi, J.W. and Hong, Y. (2013), "Three-dimensional centrifuge modelling of basement excavation effects on an existing tunnel in dry sand", Can. Geotech. J., 50(8), 874-888. https://doi.org/10.1139/cgj-2012-0423.
  28. Ng, C.W.W., Shi, J.W., Masin, D., Sun, H.S. and Lei, G.H. (2015), "Influence of sand density and retaining wall stiffness on the three-dimensional responses of a tunnel to basement excavation", Can. Geotech. J., 52(8), 1811-1829. https://doi.org/10.1139/cgj-2014-0150.
  29. Powrie, W., Pantelidou, H. and Stallebrass, S.E. (1998), "Soil stiffness in stress paths relevant to diaphragm walls in clay", Geotechnique, 48(4), 483-494. https://doi.org/10.1680/geot.1998.48.4.483.
  30. Sadique, M.R., Zaid, M. and Alam, M.M. (2022), "Rock tunnel performance under blast loading through finite element analysis", Geotech. Geol. Eng., 40, 35-56. https://doi.org/10.1007/s10706-021-01879-9.
  31. Shi, J.W., Ng, C.W.W. and Chen, Y.H. (2015), "Three-dimensional numerical parametric study of the influence of basement excavation on existing tunnel", Comput. Geotech., 63, 146-158. https://doi.org/10.1016/j.compgeo.2014.09.002.
  32. Shi, J.W., Fu, Z.Z. and Guo, W.L. (2019), "Investigation of geometric effects on three-dimensional tunnel deformation mechanisms due to basement excavation", Comput. Geotech., 106, 108-116. https://doi.org/ 10.1016/j.compgeo.2018.10.019.
  33. Shi, J.W., Chen Y.H., Lu, H., Ma, S.K. and Ng, C.W.W. (2022), "Centrifuge modeling of the influence of joint stiffness on pipeline response to underneath tunnel excavation", Can. Geotech. J., 59(9), 1568-1586. https://doi.org/10.1139/cgj-2020-0360.
  34. Soomro, M. A., Saand, A., Mangi, N., Mangnejo, D.A., Karira, H. and Liu, K. (2019), "Numerical modelling of effects of different multipropped excavation depths on adjacent single piles: comparison between floating and end-bearing pile responses", Eur. J. Environ. Civil Eng., 25(14), 2592-2622. https://doi.org/10.1080/19648189.2019.1638312.
  35. Sun, H., Chen, Y., Zhang, J. and Kuang, T. (2019), "Analytical investigation of tunnel deformation caused by circular foundation pit excavation", Comput. Geotech., 106, 193-198. https://doi.org/10.1016/ j.compgeo.2018.11.001.
  36. Vinoth, M. and Aswathy, M.S. (2021), "Behaviour of existing tunnel due to adjacent excavation-a review", Int. J. Geotech. Eng., 16(9), 1132-1151. https://doi.org/10.1080/19386362.2021.1952800.
  37. Ye, S.H., Zhao, Z.F. and Wang, D.Q. (2021), "Deformation analysis and safety assessment of existing metro tunnels affected by excavation of a foundation pit", Undergr. Space, 6, 4211-431. https://doi.org/10.1016/j.undsp. 2020.06.002.
  38. Wen, S.L. (2010), "Construction technology of deep open excavation above running metro tunnels", Chinese J. Geotech. Eng., 32(2), 451-454. https://doi.org/10.16285/j.rsm.2010.S2.031.
  39. Zaid, M. (2021a), "Dynamic stability analysis of rock tunnels subjected to impact loading with varying UCS", Geomech. Eng., 24(6), 505-518. https://doi.org/10.12989/gae.2021.24.6.505.
  40. Zaid, M. (2021b), "Three-dimensional finite element analysis of urban rock tunnel under static loading condition: effect of the rock weathering", Geomech. Eng., 25(2), 99-109. https://doi.org/10.12989/gae.2021.25.2.099.
  41. Zaid, M. (2021c), "Preliminary study to understand the effect of impact loading and rock weathering in tunnel constructed in quartzite", Geotech. Geol. Eng., https://doi.org/10.1007/s10706-021-01948-z.
  42. Zaid, M. and Mishra, S. (2021), "Numerical analysis of shallow tunnels under static loading: a finite element approach", Geotech. Geol. Eng., 39(3), 2581-2607. https://doi.org/10.1007/s10706-020-01647-1.
  43. Zaid, M., and Shah, I.A. (2021). "Numerical analysis of himalayan rock tunnels under static and blast loading". Geotechnical and Geological Engineering, 39, 5063-5083. https://doi.org/10.1007/s10706-021-01813-z
  44. Zaid, M., Sadique, M.R. and Alam, M.M. (2022), "Blast resistant analysis of rock tunnel ssing Abaqus: effect of weathering", Geotech. Geol. Eng., 40, 809-832. https://doi.org/10.1007/s10706-021-01927-4.
  45. Zhang, J.F, Wang, J.H., Chen, J.J. and Hou, Y.M. (2012), "3-D FEM back-analysis of an oversize and deep excavation", J. Shanghai Jiaotong Univ., 46(1), 42-46. https://doi.org/10.16183/j.cnki.jsjtu.2012. 01.010.
  46. Zheng, G. and Wei, S.W. (2008), "Numerical analysis of influence of overlying pit excavation on existing tunnels", J. Central South Univ. Tech., 15(2), 69-75. https://doi.org/10.1007/s11771-008-0438-4.
  47. Zhou, Y., Kong, G.Q. and Li, J.J. (2023), "Performances of belled pile influenced by pile head freedom response to a cooling-heating cycle", J. Geotech. Geoenviron. Eng., 149(2), 04022133. https://doi.org/10.1061/JGGEFK.GTENG-10407.