DOI QR코드

DOI QR Code

Immunopathogenesis of childhood idiopathic nephrotic syndrome

  • 투고 : 2022.12.13
  • 심사 : 2023.02.21
  • 발행 : 2023.06.30

초록

Pediatric nephrotic syndrome (NS) is a clinical syndrome characterized by massive proteinuria, hypoalbuminemia, and generalized edema. Most childhood NS cases are idiopathic (with an unknown etiology). Traditional therapeutic approaches based on immunosuppressive agents largely support the key role of the immune system in idiopathic NS (INS), especially in the steroid-sensitive form. Although most previous studies have suggested the main role of T cell dysfunction and/or the abnormal secretion of certain glomerular permeability factors, recent studies have emphasized the role of B cells since the therapeutic efficacy of B cell depletion therapy in inducing and/or maintaining prolonged remission in patients with INS was confirmed. Furthermore, several studies have detected circulating autoantibodies that target podocyte proteins in a subset of patients with INS, suggesting an autoimmune-mediated etiology of INS. Accordingly, a new therapeutic modality using B cell-depleting drugs has been attempted, with significant effects in a subset of patients with INS. Currently, INS is considered an immune-mediated disorder caused by a complex interplay between T cells, B cells, soluble factors, and podocytes, which may vary among patients. More in-depth investigations of the pathogenic pathways of INS are required for an effective personalized therapeutic approach and to define precise targets for therapeutic intervention.

키워드

참고문헌

  1. Noone DG, Iijima K, Parekh R. Idiopathic nephrotic syndrome in children. Lancet 2018;392:61-74. https://doi.org/10.1016/S0140-6736(18)30536-1
  2. Barisoni L, Schnaper HW, Kopp JB. A proposed taxonomy for the podocytopathies: a reassessment of the primary nephrotic diseases. Clin J Am Soc Nephrol 2007;2:529-42. https://doi.org/10.2215/CJN.04121206
  3. Shalhoub RJ. Pathogenesis of lipoid nephrosis: a disorder of T-cell function. Lancet 1974;2:556-60. https://doi.org/10.1016/S0140-6736(74)91880-7
  4. Lagrue G, Xheneumont S, Branellec A, Hirbec G, Weil B. A vascular permeability factor elaborated from lymphocytes. I. Demonstration in patients with nephrotic syndrome. Biomedicine 1975;23:37-40.
  5. Zimmerman SW. Increased urinary protein excretion in the rat produced by serum from a patient with recurrent focal glomerular sclerosis after renal transplantation. Clin Nephrol 1984;22:32-8.
  6. Koyama A, Fujisaki M, Kobayashi M, Igarashi M, Narita M. A glomerular permeability factor produced by human T cell hybridomas. Kidney Int 1991;40:453-60. https://doi.org/10.1038/ki.1991.232
  7. Kienzl-Wagner K, Waldegger S, Schneeberger S. Disease recurrence: the sword of Damocles in kidney transplantation for primary focal segmental glomerulosclerosis. Front Immunol 2019;10:1669.
  8. Hoyer JR, Vernier RL, Najarian JS, Raij L, Simmons RL, Michael AF. Recurrence of idiopathic nephrotic syndrome after renal transplantation. Lancet 1972;2:343-8. https://doi.org/10.1016/S0140-6736(72)91734-5
  9. Laufer J, Ettenger RB, Ho WG, Cohen AH, Marik JL, Fine RN. Plasma exchange for recurrent nephrotic syndrome following renal transplantation. Transplantation 1988;46:540-2. https://doi.org/10.1097/00007890-198810000-00014
  10. Dantal J, Bigot E, Bogers W, Testa A, Kriaa F, Jacques Y, et al. Effect of plasma protein adsorption on protein excretion in kidney-transplant recipients with recurrent nephrotic syndrome. N Engl J Med 1994;330:7-14. https://doi.org/10.1056/NEJM199401063300102
  11. Gallon L, Leventhal J, Skaro A, Kanwar Y, Alvarado A. Resolution of recurrent focal segmental glomerulosclerosis after re-transplantation. N Engl J Med 2012;366:1648-9. https://doi.org/10.1056/NEJMc1202500
  12. Kemper MJ, Wolf G, Muller-Wiefel DE. Transmission of glomerular permeability factor from a mother to her child. N Engl J Med 2001;344:386-7. https://doi.org/10.1056/NEJM200102013440517
  13. Kitsou K, Askiti V, Mitsioni A, Spoulou V. The immunopathogenesis of idiopathic nephrotic syndrome: a narrative review of the literature. Eur J Pediatr 2022;181:1395-404. https://doi.org/10.1007/s00431-021-04357-9
  14. Campbell RE, Thurman JM. The immune system and idiopathic nephrotic syndrome. Clin J Am Soc Nephrol 2022;17:1823-34. https://doi.org/10.2215/CJN.07180622
  15. Kemper MJ, Zepf K, Klaassen I, Link A, Muller-Wiefel DE. Changes of lymphocyte populations in pediatric steroid-sensitive nephrotic syndrome are more pronounced in remission than in relapse. Am J Nephrol 2005;25:132-7. https://doi.org/10.1159/000085357
  16. Baris HE, Baris S, Karakoc-Aydiner E, Gokce I, Yildiz N, Cicekkoku D, et al. The effect of systemic corticosteroids on the innate and adaptive immune system in children with steroid responsive nephrotic syndrome. Eur J Pediatr 2016;175:685-93. https://doi.org/10.1007/s00431-016-2694-x
  17. Bhatia D, Sinha A, Hari P, Sopory S, Saini S, Puraswani M, et al. Rituximab modulates T- and B-lymphocyte subsets and urinary CD80 excretion in patients with steroid-dependent nephrotic syndrome. Pediatr Res 2018;84:520-6. https://doi.org/10.1038/s41390-018-0088-7
  18. Liu LL, Qin Y, Cai JF, Wang HY, Tao JL, Li H, et al. Th17/Treg imbalance in adult patients with minimal change nephrotic syndrome. Clin Immunol 2011;139:314-20. https://doi.org/10.1016/j.clim.2011.02.018
  19. Stachowski J, Barth C, Michalkiewicz J, Krynicki T, Jarmolinski T, Runowski D, et al. Th1/Th2 balance and CD45-positive T cell subsets in primary nephrotic syndrome. Pediatr Nephrol 2000;14:779-85. https://doi.org/10.1007/PL00013437
  20. Park E, Chang HJ, Shin JI, Lim BJ, Jeong HJ, Lee KB, et al. Familial IPEX syndrome: different glomerulopathy in two siblings. Pediatr Int 2015;57:e59-61. https://doi.org/10.1111/ped.12570
  21. Hashimura Y, Nozu K, Kanegane H, Miyawaki T, Hayakawa A, Yoshikawa N, et al. Minimal change nephrotic syndrome associated with immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome. Pediatr Nephrol 2009;24:1181-6. https://doi.org/10.1007/s00467-009-1119-8
  22. Chen J, Qiao XH, Mao JH. Immunopathogenesis of idiopathic nephrotic syndrome in children: two sides of the coin. World J Pediatr 2021;17:115-22. https://doi.org/10.1007/s12519-020-00400-1
  23. Cheung PK, Stulp B, Immenschuh S, Borghuis T, Baller JF, Bakker WW. Is 100KF an isoform of hemopexin? Immunochemical characterization of the vasoactive plasma factor 100KF. J Am Soc Nephrol 1999;10:1700-8. https://doi.org/10.1681/ASN.V1081700
  24. Lennon R, Singh A, Welsh GI, Coward RJ, Satchell S, Ni L, et al. Hemopexin induces nephrin-dependent reorganization of the actin cytoskeleton in podocytes. J Am Soc Nephrol 2008;19:2140-9. https://doi.org/10.1681/ASN.2007080940
  25. Bakker WW, van Dael CM, Pierik LJ, van Wijk JA, Nauta J, Borghuis T, et al. Altered activity of plasma hemopexin in patients with minimal change disease in relapse. Pediatr Nephrol 2005;20:1410-5. https://doi.org/10.1007/s00467-005-1936-3
  26. Wei C, Moller CC, Altintas MM, Li J, Schwarz K, Zacchigna S, et al. Modification of kidney barrier function by the urokinase receptor. Nat Med 2008;14:55-63. https://doi.org/10.1038/nm1696
  27. Wei C, El Hindi S, Li J, Fornoni A, Goes N, Sageshima J, et al. Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis. Nat Med 2011;17:952-60. https://doi.org/10.1038/nm.2411
  28. Peng Z, Mao J, Chen X, Cai F, Gu W, Fu H, et al. Serum suPAR levels help differentiate steroid resistance from steroid-sensitive nephrotic syndrome in children. Pediatr Nephrol 2015;30:301-7. https://doi.org/10.1007/s00467-014-2892-6
  29. Meijers B, Maas RJ, Sprangers B, Claes K, Poesen R, Bammens B, et al. The soluble urokinase receptor is not a clinical marker for focal segmental glomerulosclerosis. Kidney Int 2014;85:636-40. https://doi.org/10.1038/ki.2013.505
  30. Sinha A, Bajpai J, Saini S, Bhatia D, Gupta A, Puraswani M, et al. Serum-soluble urokinase receptor levels do not distinguish focal segmental glomerulosclerosis from other causes of nephrotic syndrome in children. Kidney Int 2014;85:649-58. https://doi.org/10.1038/ki.2013.546
  31. Delville M, Sigdel TK, Wei C, Li J, Hsieh SC, Fornoni A, et al. A circulating antibody panel for pretransplant prediction of FSGS recurrence after kidney transplantation. Sci Transl Med 2014;6:256ra136.
  32. Konigshausen E, Sellin L. Circulating permeability factors in primary focal segmental glomerulosclerosis: a review of proposed candidates. Biomed Res Int 2016;2016:3765608.
  33. McCarthy ET, Sharma M, Savin VJ. Circulating permeability factors in idiopathic nephrotic syndrome and focal segmental glomerulosclerosis. Clin J Am Soc Nephrol 2010;5:2115-21. https://doi.org/10.2215/CJN.03800609
  34. Savin VJ, Sharma M, Zhou J, Gennochi D, Fields T, Sharma R, et al. Renal and hematological effects of CLCF-1, a B-cell-stimulating cytokine of the IL-6 family. J Immunol Res 2015;2015:714964.
  35. Clement LC, Avila-Casado C, Mace C, Soria E, Bakker WW, Kersten S, et al. Podocyte-secreted angiopoietin-like-4 mediates proteinuria in glucocorticoid-sensitive nephrotic syndrome. Nat Med 2011;17:117-22. https://doi.org/10.1038/nm.2261
  36. Cara-Fuentes G, Segarra A, Silva-Sanchez C, Wang H, Lanaspa MA, Johnson RJ, et al. Angiopoietin-like-4 and minimal change disease. PLoS One 2017;12:e0176198.
  37. Reiser J, von Gersdorff G, Loos M, Oh J, Asanuma K, Giardino L, et al. Induction of B7-1 in podocytes is associated with nephrotic syndrome. J Clin Invest 2004;113:1390-7. https://doi.org/10.1172/JCI20402
  38. Chugh SS, Clement LC, Mace C. New insights into human minimal change disease: lessons from animal models. Am J Kidney Dis 2012;59:284-92. https://doi.org/10.1053/j.ajkd.2011.07.024
  39. Shimada M, Araya C, Rivard C, Ishimoto T, Johnson RJ, Garin EH. Minimal change disease: a "two-hit" podocyte immune disorder? Pediatr Nephrol 2011;26:645-9. https://doi.org/10.1007/s00467-010-1676-x
  40. Alegre ML, Frauwirth KA, Thompson CB. T-cell regulation by CD28 and CTLA-4. Nat Rev Immunol 2001;1:220-8. https://doi.org/10.1038/35105024
  41. Goldwich A, Burkard M, Olke M, Daniel C, Amann K, Hugo C, et al. Podocytes are nonhematopoietic professional antigen-presenting cells. J Am Soc Nephrol 2013;24:906-16. https://doi.org/10.1681/ASN.2012020133
  42. Reiser J, Mundel P. Danger signaling by glomerular podocytes defines a novel function of inducible B7-1 in the pathogenesis of nephrotic syndrome. J Am Soc Nephrol 2004;15:2246-8. https://doi.org/10.1097/01.ASN.0000136312.46464.33
  43. Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 2008;322:271-5. https://doi.org/10.1126/science.1160062
  44. Mosser DM, Zhang X. Interleukin-10: new perspectives on an old cytokine. Immunol Rev 2008;226:205-18. https://doi.org/10.1111/j.1600-065X.2008.00706.x
  45. Cara-Fuentes G, Wasserfall CH, Wang H, Johnson RJ, Garin EH. Minimal change disease: a dysregulation of the podocyte CD80-CTLA-4 axis? Pediatr Nephrol 2014;29:2333-40. https://doi.org/10.1007/s00467-014-2874-8
  46. Garin EH, Diaz LN, Mu W, Wasserfall C, Araya C, Segal M, et al. Urinary CD80 excretion increases in idiopathic minimal-change disease. J Am Soc Nephrol 2009;20:260-6. https://doi.org/10.1681/ASN.2007080836
  47. Garin EH, Mu W, Arthur JM, Rivard CJ, Araya CE, Shimada M, et al. Urinary CD80 is elevated in minimal change disease but not in focal segmental glomerulosclerosis. Kidney Int 2010;78:296-302. https://doi.org/10.1038/ki.2010.143
  48. Ling C, Liu X, Shen Y, Chen Z, Fan J, Jiang Y, et al. Urinary CD80 levels as a diagnostic biomarker of minimal change disease. Pediatr Nephrol 2015;30:309-16. https://doi.org/10.1007/s00467-014-2915-3
  49. Ling C, Liu X, Shen Y, Chen Z, Fan J, Jiang Y, et al. Urinary CD80 excretion is a predictor of good outcome in children with primary nephrotic syndrome. Pediatr Nephrol 2018;33:1183-7. https://doi.org/10.1007/s00467-018-3885-7
  50. Yu CC, Fornoni A, Weins A, Hakroush S, Maiguel D, Sageshima J, et al. Abatacept in B7-1-positive proteinuric kidney disease. N Engl J Med 2013;369:2416-23. https://doi.org/10.1056/NEJMoa1304572
  51. Dado D, Parikh S, Ayoub I, Rovin B, Nadasdy T, Hebert L. Abatacept efficacy in steroid-resistant minimal-change disease revealed by the speed of proteinuria reduction after the start of abatacept. Clin Nephrol 2018;89:376-80. https://doi.org/10.5414/CN109290
  52. Minamikawa S, Nozu K, Maeta S, Yamamura T, Nakanishi K, Fujimura J, et al. The utility of urinary CD80 as a diagnostic marker in patients with renal diseases. Sci Rep 2018;8:17322.
  53. Gonzalez Guerrico AM, Lieske J, Klee G, Kumar S, Lopez-Baez V, Wright AM, et al. Urinary CD80 discriminates among glomerular disease types and reflects disease activity. Kidney Int Rep 2020;5:2021-31. https://doi.org/10.1016/j.ekir.2020.08.001
  54. Benigni A, Gagliardini E, Remuzzi G. Abatacept in B7-1-positive proteinuric kidney disease. N Engl J Med 2014;370:1261-3. https://doi.org/10.1056/NEJMc1400502
  55. Alachkar N, Carter-Monroe N, Reiser J. Abatacept in B7-1-positive proteinuric kidney disease. N Engl J Med 2014;370:1263-4.
  56. Arase N, Arase H. Cellular misfolded proteins rescued from degradation by MHC class II molecules are possible targets for autoimmune diseases. J Biochem 2015;158:367-72. https://doi.org/10.1093/jb/mvv093
  57. Benz K, Dotsch J, Rascher W, Stachel D. Change of the course of steroid-dependent nephrotic syndrome after rituximab therapy. Pediatr Nephrol 2004;19:794-7. https://doi.org/10.1007/s00467-004-1434-z
  58. Iijima K, Sako M, Nozu K, Mori R, Tuchida N, Kamei K, et al. Rituximab for childhood-onset, complicated, frequently relapsing nephrotic syndrome or steroid-dependent nephrotic syndrome: a multicentre, double-blind, randomised, placebo-controlled trial. Lancet 2014;384:1273-81. https://doi.org/10.1016/S0140-6736(14)60541-9
  59. Gauckler P, Shin JI, Alberici F, Audard V, Bruchfeld A, Busch M, et al. Rituximab in adult minimal change disease and focal segmental glomerulosclerosis: what is known and what is still unknown? Autoimmun Rev 2020;19:102671.
  60. Audard V, Larousserie F, Grimbert P, Abtahi M, Sotto JJ, Delmer A, et al. Minimal change nephrotic syndrome and classical Hodgkin's lymphoma: report of 21 cases and review of the literature. Kidney Int 2006;69:2251-60. https://doi.org/10.1038/sj.ki.5000341
  61. Kofman T, Zhang SY, Copie-Bergman C, Moktefi A, Raimbourg Q, Francois H, et al. Minimal change nephrotic syndrome associated with non-Hodgkin lymphoid disorders: a retrospective study of 18 cases. Medicine (Baltimore) 2014;93:350-8. https://doi.org/10.1097/MD.0000000000000206
  62. Chan EY, Webb H, Yu E, Ghiggeri GM, Kemper MJ, Ma AL, et al. Both the rituximab dose and maintenance immunosuppression in steroid-dependent/frequently-relapsing nephrotic syndrome have important effects on outcomes. Kidney Int 2020;97:393-401. https://doi.org/10.1016/j.kint.2019.09.033
  63. Colucci M, Oniszczuk J, Vivarelli M, Audard V. B-cell dysregulation in idiopathic nephrotic syndrome: what we know and what we need to discover. Front Immunol 2022;13:823204.
  64. Wang CS, Liverman RS, Garro R, George RP, Glumova A, Karp A, et al. Ofatumumab for the treatment of childhood nephrotic syndrome. Pediatr Nephrol 2017;32:835-41. https://doi.org/10.1007/s00467-017-3621-8
  65. Dossier C, Prim B, Moreau C, Kwon T, Maisin A, Nathanson S, et al. A global antiB cell strategy combining obinutuzumab and daratumumab in severe pediatric nephrotic syndrome. Pediatr Nephrol 2021;36:1175-82. https://doi.org/10.1007/s00467-020-04811-0
  66. Shen P, Fillatreau S. Antibody-independent functions of B cells: a focus on cytokines. Nat Rev Immunol 2015;15:441-51. https://doi.org/10.1038/nri3857
  67. Abdel-Hafez M, Shimada M, Lee PY, Johnson RJ, Garin EH. Idiopathic nephrotic syndrome and atopy: is there a common link? Am J Kidney Dis 2009;54:945-53. https://doi.org/10.1053/j.ajkd.2009.03.019
  68. Cho BS, Yoon SR, Jang JY, Pyun KH, Lee CE. Up-regulation of interleukin-4 and CD23/FcepsilonRII in minimal change nephrotic syndrome. Pediatr Nephrol 1999;13:199-204. https://doi.org/10.1007/s004670050592
  69. Kemper MJ, Meyer-Jark T, Lilova M, Muller-Wiefel DE. Combined Tand B-cell activation in childhood steroid-sensitive nephrotic syndrome. Clin Nephrol 2003;60:242-7. https://doi.org/10.5414/CNP60242
  70. Oniszczuk J, Beldi-Ferchiou A, Audureau E, Azzaoui I, Molinier-Frenkel V, Frontera V, et al. Circulating plasmablasts and high level of BAFF are hallmarks of minimal change nephrotic syndrome in adults. Nephrol Dial Transplant 2021;36:609-17. https://doi.org/10.1093/ndt/gfaa279
  71. Kim AH, Chung JJ, Akilesh S, Koziell A, Jain S, Hodgin JB, et al. B cell-derived IL-4 acts on podocytes to induce proteinuria and foot process effacement. JCI Insight 2017;2:e81836.
  72. Gbadegesin RA, Adeyemo A, Webb NJ, Greenbaum LA, Abeyagunawardena A, Thalgahagoda S, et al. HLA-DQA1 and PLCG2 are candidate risk loci for childhood-onset steroid-sensitive nephrotic syndrome. J Am Soc Nephrol 2015;26:1701-10. https://doi.org/10.1681/ASN.2014030247
  73. Debiec H, Dossier C, Letouze E, Gillies CE, Vivarelli M, Putler RK, et al. Transethnic, genome-wide analysis reveals immune-related risk alleles and phenotypic correlates in pediatric steroid-sensitive nephrotic syndrome. J Am Soc Nephrol 2018;29:2000-13. https://doi.org/10.1681/ASN.2017111185
  74. Jia X, Yamamura T, Gbadegesin R, McNulty MT, Song K, Nagano C, et al. Common risk variants in NPHS1 and TNFSF15 are associated with childhood steroid-sensitive nephrotic syndrome. Kidney Int 2020;98:1308-22.
  75. Ling C, Wang X, Chen Z, Fan J, Meng Q, Zhou N, et al. Altered B-lymphocyte homeostasis in idiopathic nephrotic syndrome. Front Pediatr 2019;7:377.
  76. Ling C, Chen Z, Fan J, Sun Q, Wang X, Hua L, et al. Decreased circulating transitional B-cell to memory B-cell ratio is a risk factor for relapse in children with steroid-sensitive nephrotic syndrome. Nephron 2021;145:107-12. https://doi.org/10.1159/000511319
  77. Colucci M, Carsetti R, Cascioli S, Casiraghi F, Perna A, Rava L, et al. B cell reconstitution after rituximab treatment in idiopathic nephrotic syndrome. J Am Soc Nephrol 2016;27:1811-22. https://doi.org/10.1681/ASN.2015050523
  78. Dantal J, Godfrin Y, Koll R, Perretto S, Naulet J, Bouhours JF, et al. Antihuman immunoglobulin affinity immunoadsorption strongly decreases proteinuria in patients with relapsing nephrotic syndrome. J Am Soc Nephrol 1998;9:1709-15. https://doi.org/10.1681/ASN.V991709
  79. Musante L, Candiano G, Bruschi M, Santucci L, Carnemolla B, Orecchia P, et al. Circulating anti-actin and anti-ATP synthase antibodies identify a sub-set of patients with idiopathic nephrotic syndrome. Clin Exp Immunol 2005;141:491-9. https://doi.org/10.1111/j.1365-2249.2005.02862.x
  80. Alachkar N, Gupta G, Montgomery RA. Angiotensin antibodies and focal segmental glomerulosclerosis. N Engl J Med 2013;368:971-3. https://doi.org/10.1056/NEJMc1207233
  81. Jamin A, Berthelot L, Couderc A, Chemouny JM, Boedec E, Dehoux L, et al. Autoantibodies against podocytic UCHL1 are associated with idiopathic nephrotic syndrome relapses and induce proteinuria in mice. J Autoimmun 2018;89:149-61. https://doi.org/10.1016/j.jaut.2017.12.014
  82. Sun Y, Zhang H, Hu R, Sun J, Mao X, Zhao Z, et al. The expression and significance of neuronal iconic proteins in podocytes. PLoS One 2014;9:e93999.
  83. Meyer-Schwesinger C, Meyer TN, Munster S, Klug P, Saleem M, Helmchen U, et al. A new role for the neuronal ubiquitin C-terminal hydrolase-L1 (UCH-L1) in podocyte process formation and podocyte injury in human glomerulopathies. J Pathol 2009;217:452-64. https://doi.org/10.1002/path.2446
  84. Liu Y, Wu J, Wu H, Wang T, Gan H, Zhang X, et al. UCH-L1 expression of podocytes in diseased glomeruli and in vitro. J Pathol 2009;217:642-53. https://doi.org/10.1002/path.2511
  85. Ye Q, Zhang Y, Zhuang J, Bi Y, Xu H, Shen Q, et al. The important roles and molecular mechanisms of annexin A2 autoantibody in children with nephrotic syndrome. Ann Transl Med 2021;9:1452.
  86. Ye Q, Zhou C, Wang D, Fu H, Wang J, Mao J. Seven novel podocyte autoantibodies were identified to diagnosis a new disease subgroup-autoimmune podocytopathies. Clin Immunol 2021;232:108869.
  87. Watts AJ, Keller KH, Lerner G, Rosales I, Collins AB, Sekulic M, et al. Discovery of autoantibodies targeting nephrin in minimal change disease supports a novel autoimmune etiology. J Am Soc Nephrol 2022;33:238-52. https://doi.org/10.1681/ASN.2021060794
  88. Caster DJ, Korte EA, Merchant ML, Klein JB, Wilkey DW, Rovin BH, et al. Autoantibodies targeting glomerular annexin A2 identify patients with proliferative lupus nephritis. Proteomics Clin Appl 2015;9:1012-20. https://doi.org/10.1002/prca.201400175
  89. Chen P, Yan H, Tian Y, Xun Y, Shi L, Bao R, et al. Annexin A2 as a target endothelial cell membrane autoantigen in Behcet's disease. Sci Rep 2015;5:8162.
  90. Salle V, Maziere JC, Brule A, Schmidt J, Smail A, Duhaut P, et al. Antibodies against the N-terminal domain of annexin A2 in antiphospholipid syndrome. Eur J Intern Med 2012;23:665-8. https://doi.org/10.1016/j.ejim.2012.04.006
  91. Hayes MJ, Shao D, Bailly M, Moss SE. Regulation of actin dynamics by annexin 2. EMBO J 2006;25:1816-26. https://doi.org/10.1038/sj.emboj.7601078
  92. Ye Q, Chen A, Lai EY, Mao J. Autoimmune podocytopathies: a novel sub-group of diseases from childhood idiopathic nephrotic syndrome. J Am Soc Nephrol 2022;33:653-4. https://doi.org/10.1681/ASN.2021111469
  93. Kestila M, Lenkkeri U, Mannikko M, Lamerdin J, McCready P, Putaala H, et al. Positionally cloned gene for a novel glomerular protein--nephrin--is mutated in congenital nephrotic syndrome. Mol Cell 1998;1:575-82. https://doi.org/10.1016/S1097-2765(00)80057-X
  94. Orikasa M, Matsui K, Oite T, Shimizu F. Massive proteinuria induced in rats by a single intravenous injection of a monoclonal antibody. J Immunol 1988;141:807-14. https://doi.org/10.4049/jimmunol.141.3.807
  95. Takeuchi K, Naito S, Kawashima N, Ishigaki N, Sano T, Kamata K, et al. New anti-nephrin antibody mediated podocyte injury model using a C57BL/6 mouse strain. Nephron 2018;138:71-87. https://doi.org/10.1159/000479935
  96. Holmberg C, Jalanko H. Congenital nephrotic syndrome and recurrence of proteinuria after renal transplantation. Pediatr Nephrol 2014;29:2309-17. https://doi.org/10.1007/s00467-014-2781-z
  97. Kuusniemi AM, Qvist E, Sun Y, Patrakka J, Ronnholm K, Karikoski R, et al. Plasma exchange and retransplantation in recurrent nephrosis of patients with congenital nephrotic syndrome of the Finnish type (NPHS1). Transplantation 2007;83:1316-23. https://doi.org/10.1097/01.tp.0000262569.27890.64
  98. Gadegbeku CA, Gipson DS, Holzman LB, Ojo AO, Song PX, Barisoni L, et al. Design of the nephrotic syndrome study network (NEPTUNE) to evaluate primary glomerular nephropathy by a multidisciplinary approach. Kidney Int 2013;83:749-56. https://doi.org/10.1038/ki.2012.428
  99. Hada I, Shimizu A, Takematsu H, Nishibori Y, Kimura T, Fukutomi T, et al. A novel mouse model of idiopathic nephrotic syndrome induced by immunization with the podocyte protein Crb2. J Am Soc Nephrol 2022;33:2008-25. https://doi.org/10.1681/ASN.2022010070
  100. Moller-Kerutt A, Rodriguez-Gatica JE, Wacker K, Bhatia R, Siebrasse JP, Boon N, et al. Crumbs2 is an essential slit diaphragm protein of the renal filtration barrier. J Am Soc Nephrol 2021;32:1053-70. https://doi.org/10.1681/ASN.2020040501