DOI QR코드

DOI QR Code

Effect of stud corrosion on stiffness in negative bending moment region of steel-concrete composite beams

  • Yulin Zhan (Department of bridge Engineering, Southwest Jiaotong University) ;
  • Wenfeng Huang (Department of bridge Engineering, Southwest Jiaotong University) ;
  • Shuoshuo Zhao (Department of bridge Engineering, Southwest Jiaotong University) ;
  • Junhu Shao (School of Architecture and Civil Engineering, Chengdu University) ;
  • Dong Shen (Wenzhou Qidu Bridge North Branch Bridge Construction Co., Ltd) ;
  • Guoqiang Jin (Bridge Science Research Institute Ltd., China Zhongtie Major Bridge Engineering Group)
  • Received : 2022.02.28
  • Accepted : 2023.05.30
  • Published : 2023.07.10

Abstract

Corrosion of the headed studs shear connectors is an important factor in the reduction of the durability and mechanical properties of the steel-concrete composite structure. In order to study the effect of stud corrosion on the mechanical properties in the negative moment region of steel-concrete composite beams, the corrosion of stud was carried out by accelerating corrosion method with constant current. Static monotonic loading was adopted to evaluate the cracking load, interface slip, mid-span deflection, and ultimate bearing capacity of four composite beams with varying corrosion rates of headed studs. The effect of stud corrosion on the stiffness of the composite beam's hogging moment zone during normal service stage was thoroughly examined. The results indicate that the cracking load decreased by 50% as the corrosion rate of headed studs increase to 10%. Meanwhile, due to the increase of interface slip and mid-span deflection, the bending stiffness dropped significantly with the same load. In comparison to uncorroded specimens, the secant stiffness of specimens with 0.5 times ultimate load was reduced by 25.9%. However, corrosion of shear studs had no obvious effect on ultimate bending capacity. Based on the experimental results and the theory of steel-concrete interface slip, a method was developed to calculate the bending stiffness in the negative bending moment region of composite beams during normal service stage while taking corrosion of headed studs into account. The validity of the calculation method was demonstrated by data analysis.

Keywords

Acknowledgement

The research described in this paper was supported by the National Science Fund of China (Grant 51878564 and 52278220), Sichuan Science and Technology Program (Grant 2021JDTD0012).

References

  1. ACI 318 (2011), Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, Farmington Hills, MI, USA.
  2. Cao, G., Yang, L., Zhang, W., Peng, X. and Dai, Y. (2018), "Long-term mechanical properties of steel-concrete connectors subjected to corrosion and load coupling", Journal of Materials in Civil Engineering. 30(5), 04018058. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002224.
  3. Chen, J., Jiang, A. and Jin, W. (2014). "Behavior of steel-concrete composite beams with corroded shear studs under negative bending moment", 4th International Conference on the Durability of Concrete Structures, West Lafayette, IN, United states, July. https://doi.org/10.5703/1288284315393.
  4. Chen, J., Zhang, H. and Yu, Q. (2019), "Static and fatigue behavior of steel-concrete composite beams with corroded studs", J. Construct. Steel Res., 156, 18-27. https://doi.org/10.1016/j.jcsr.2019.01.019.
  5. Chen, J., Zhao, Y.X., Wu, L. and Jin, W.L. (2016), "Experimental investigation and design of corroded stud shear connectors", Adv. Struct. Eng., 19(2), 218-226. https://doi.org/10.1177/1369433215624327.
  6. Ding, F.X., Liu, J., Liu, X.M., Guo, F.Q. and Jiang, L.Z. (2016), "Flexural stiffness of steel-concrete composite beam under positive moment", Steel Compos. Struct., 20(6), 1369-1389. https://doi.org/10.12989/scs.2016.20.6.1369.
  7. Dong, B., Fang, G., Liu, Y., Dong, P., Zhang, J., Xing, F. and Hong, S. (2017), "Monitoring reinforcement corrosion and corrosion-induced cracking by X-ray microcomputed tomography method", Cement Concrete Res., 100, 311-321. https://doi.org/10.1016/j.cemconres.2017.07.009.
  8. Fan, J.S., Shi, Z., Gou, S., Nie, X., Zhang, J. and Wang, Z. (2017), "Experimental research on negative bending behavior of steel-ECC composite beams", China Civil Eng. J., 50(4), 64-72. https://doi.org/10.15951/j.tmgcxb.2017.04.008.
  9. GB 50017-2017 (2017), Standard for design of steel structures, Ministry of Housing and Urban-Rural Development, PRC, Beijing, China.
  10. GB 50917-2013 (2013), Code for Design of Steel and Concrete Composite Bridges, Ministry of Housing and Urban-Rural Development, PRC, Beijing, China.
  11. GB/T 1499.2-2018 (2018), Steel for the Reinforcement of Concrete-Part 2: Hot Rolled Ribbed Bars, State General Administration of the Peoples Republic of China for Quality Supervision and Inspection and Quarantine, Beijing, China.
  12. GB/T 6478-2015 (2015), Steel for Cold Heading and Cold Extruding, State General Administration of the Peoples Republic of China for Quality Supervision and Inspection and Quarantine, Beijing, China.
  13. He, J., Lin, Z., Liu, Y., Xu, X., Xin, H. and Wang, S. (2020), "Shear stiffness of headed studs on structural behaviors of steel-concrete composite girders", Steel Compos. Struct., 36(5), 553-568. https://doi.org/10.12989/scs.2020.36.5.553.
  14. Kuang, Y., Feng, J., Yu, Z. and Liu, X. (2014). "Experimental study and analysis of the structural behavior of steel-concrete composite beam after shear connector corrosion", 4th International Conference on Civil Engineering, Architecture and Building Materials, Haikou, China, May. https://doi.org/10.4028/www.scientific.net/AMM.578-579.1522.
  15. Lee, J.Y. and Kim, S.W. (2010), "Torsional strength of RC beams considering tension stiffening effect", J. Struct. Eng., 136(11), 1367-1378. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000237.
  16. Liu, J., Ding, F.x., Liu, X. and Yu, Z.W. (2016), "Study on flexural capacity of simply supported steel-concrete composite beam", Steel Compos. Struct., 21(4), 829-847. https://doi.org/10.12989/scs.2016.21.4.829.
  17. Navarro, M.G. and Lebet, J.P. (2001), "Concrete cracking in composite bridges: tests, models and design proposals", Struct. Eng. Int., 11(3), 184-190. https://doi.org/10.2749/101686601780346922.
  18. Nie, J.G. and Cai, C.S. (2003), "Steel-concrete composite beams considering shear slip effects", Journal of Structural Engineering. 129(4), 495-506. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:4(495).
  19. Nie, J.G. and Fan, J.S. (2002), "Analysis of composite beam stiffness under negative bending", Eng. Mech., 19(4), 33-36.
  20. Nie, J.G., Fan, J.S. and Cai, C.S. (2004), "Stiffness and deflection of steel-concrete composite beams under negative bending", J. Struct. Eng.-Asce. 130(11), 1842-1851. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:11(1842).
  21. Rong, X., Huang, Q. and Ren, Y. (2013), "Experimental study on static and fatigue behaviors of stud connectors for composite beams after corrosion", China Civil Eng. J., 46(2), 10-18. https://doi.org/10.15951/j.tmgcxb.2013.02.006.
  22. Ryu, H.K., Chang, S.P., Kim, Y.J. and Kim, B.S. (2005), "Crack control of a steel and concrete composite plate girder with prefabricated slabs under hogging moments", Eng. Struct., 27(11), 1613-1624. https://doi.org/10.1016/j.engstruct.2005.05.015.
  23. Stewart, M.G. (2009), "Mechanical behaviour of pitting corrosion of flexural and shear reinforcement and its effect on structural reliability of corroding RC beams", Struct. Safety. 31(1), 19-30. https://doi.org/10.1016/j.strusafe.2007.12.001.
  24. Suwaed, A.S.H. and Karavasilis, T.L. (2020), "Demountable steel-concrete composite beam with full-interaction and low degree of shear connection", J. Construct. Steel Res., 171. https://doi.org/10.1016/j.jcsr.2020.106152.
  25. Suwaed, A.S.H., He, J. and Vasdravellis, G. (2022), "Experimental and Numerical Evaluation of a Welded Demountable Shear Connector through Horizontal Pushout Tests", J. Struct. Eng., 148(2). https://doi.org/10.1061/(ASCE)ST.1943-541X.0003269.
  26. Tao, M.X., Li, Z.A., Zhou, Q.L. and Xu, L.Y. (2021), "Analysis of equivalent flexural stiffness of steel-concrete composite beams in frame structures", Appl. Sci. Basel. 11(21). https://doi.org/10.3390/app112110305.
  27. Uy, B. (2012), "Applications, behaviour and design of composite steel-concrete structures", Adv. Struct. Eng., 15(9), 1559-1571. https://doi.org/10.1201/9780429426506-4.
  28. Wang, L., Zhang, X., Zhang, J., Ma, Y. and Liu, Y. (2015), "Effects of stirrup and inclined bar corrosion on shear behavior of RC beams", Construct. Build. Mater., 98, 537-546. https://doi.org/10.1016/j.conbuildmat.2015.07.077.
  29. Xu, B., Liu, Y.J., Zhu, W.Q. and Jiang, L. (2019), "Simplified method of calculating flexural capacity of steel-concrete composite beam after stud corrosion", J. Traffic Transport. Eng., 19(2), 25-35. https://doi.org/10.19818/j.cnki.1671-1637.2019.02.003.
  30. Xu, B., Zhu, W. and Shang, Y. (2019). "Calculation method of flexural capacity of composite beam in negative moment area after corrosion of interfacial nolt", 5th International Conference on Environmental Science and Civil Engineering. Nanchang, China, April. https://doi.org/10.1088/1755-1315/283/1/012033.
  31. Xu, X., He, D., Zeng, S., He, W., Tan, H. and Yu, Z. (2021), "Effect of concrete cracks on the corrosion of headed studs in steel and concrete composite structures", Construct. Build. Mater., 293, 123440. https://doi.org/10.1016/j.conbuildmat.2021.123440.
  32. Xue, W., Chen, J. and Wu, L. (2013), "Experimental investigation of composite steel-concrete beams with corroded studs", J. Build. Struct., 34(S1), 222-226. https://doi.org/10.14006/j.jzjgxb.2013.s1.033.
  33. Yu, Z., Kuang, Y., Gong, K. and Shi, W. (2010), "Structural behavior of steel-concrete composite beam with accelerated deterioration using a galvanstatic method", J. Railw. Sci. Eng., 7(03), 1-5. https://doi.org/10.19713/j.cnki.43-1423/u.2010.03.001.
  34. Zanuy, C. (2010), "Investigating the negative tension stiffening effect of reinforced concrete", Struct. Eng. Mech., 34(2), 189-211. https://doi.org/10.12989/sem.2010.34.2.189.
  35. Zhan, Y.L., Lu, S.J., Zheng, Y.B., Jiang, H.J. and Xiong, S.H. (2021), "Theoretical study on the influence of welding collar on the shear behavior of stud shear connectors", Ksce J. Civil Eng., 25(4), 1353-1368. https://doi.org/10.1007/s12205-021-0632-6.
  36. Zhang, Y., Li, Y. and Fan, J. (2013), "Stiffness calculation method for steel-concretecontinuous composite beams", J. Central South Univ., 44(8), 3520-3526.