DOI QR코드

DOI QR Code

Experimental and numerical investigation on flexural response of reinforced rubberized concrete beams using waste tire rubber

  • 투고 : 2022.12.24
  • 심사 : 2023.06.28
  • 발행 : 2023.07.10

초록

The impacts of waste tire rubber (WTR) on the bending conduct of reinforced concrete beams (RCBs) are investigated in visualization of experimental tests and 3D finite element model (FEM) using both ANSYS and SAP2000. Several WTR rates are used in total 4 various full scale RCBs to observe the impact of WTR rate on the rupture and bending conduct of RCBs. For this purpose, the volumetric ratios (Vf) of WTR were chosen to change to 0%, 2.5%, 5% and 7.5% in the whole concrete. In relation to experimental test consequences, bending and rupture behaviors of the RCBs are observed. The best performance among the beams was observed in the beams with 2.5% WTR. Furthermore, as stated by test consequences, it is noticed that while WTR rate in the RCBs is improved, max. bending in the RCBs rises. For test consequences, it is clearly recognized as WTR rate in the RCB mixture is improved from 0% to 2.5%, deformation value in the RCB remarkably rises from 3.89 cm to 7.69 cm. This consequence is markedly recognized that WTR rates have a favorable result on deformation values in the RCBs. Furthermore, experimental tests are compared to 3D FEM consequences via using ANSYS software. In the ANSYS, special element types are formed and nonlinear multilinear misses plasticity material model and bilinear misses plasticity material model are chosen for concrete and compression and tension elements. As a consequence, it is noticed that each WTR rates in the RCBs mixture have dissimilar bending and rupture impacts on the RCBs. Then, to observe the impacts of WTR rate on the constructions under near-fault ground motions, a reinforced-concrete building was modelled via using SAP2000 software using 3-D model of the construction to complete nonlinear static analysis. Beam, column, steel haunch elements are modeled as nonlinear frame elements. Consequently, the seismic impacts of WTR rate on the lateral motions of each floor are obviously investigated particularly. Considering reduction in weight of structure and capacity of the members with using waste tire rubber, 2.5% of WTR resulted in the best performance while the construction is subjected to near fault earthquakes. Moreover, it is noticeably recognized that WTR rate has opposing influences on the seismic displacement behavior of the RC constructions.

키워드

참고문헌

  1. Abdelli, H.E., Mokrani, L., Kennouche, S. and Aguiar, J.L. (2021), "Mechanical and durability properties of concrete incorporating glass and plastic waste", Adv. Concrete Construct., 11(2), 173-181. https://doi.org/10.12989/acc.2021.11.2.173.
  2. Abdulfattah, O., Alsurakji, I.H., El-Qanni, A., Samaaneh, M., Najjar, M., Abdallah, R. and Assaf, I. (2022), "Experimental evaluation of using pyrolyzed carbon black derived from waste tires as additive towards sustainable concrete", Case Studies Construct. Mater., 16, e00938, https://doi.org/10.1016/j.cscm.2022.e00938.
  3. Ahmad, J., Majdi, A., Al-Fakih, A., Deifalla, A.F., Althoey, F., El Ouni, M.H. and El-Shorbagy, M.A. (2022), "Mechanical and durability performance of coconut fiber reinforced concrete: A state-of-the-art review", Materials, 15, 3601. https://doi.org/10.3390/ma15103601.
  4. Ahmed, A., Abbas, S., Abbass, W., Waheed, A., Razzaq, A., Ali, E. and Deifalla, A.F. (2022), "Potential of waste marble sludge for repressing alkali-silica reaction in concrete with reactive aggregates", Materials, 15, 3962. https://doi.org/10.3390/ma15113962.
  5. Ahmed, H.U., Mohammed, A.S., Faraj, R.H., Qaidi, S.M.A. and Mohammed, A.A., (2022), "Compressive strength of geopolymer concrete modified with nano-silica: Experimental and modeling investigations", Case Studies Construct. Mater., 16, https://doi.org/10.1016/j.cscm.2022.e01036.
  6. Aksoylu, C., Ozkilic, Y.O., Hadzima-Nyarko, M., Isik, E. and Arslan, M.H. (2022a), "Investigation on improvement in shear performance of reinforced-concrete beams produced with recycled steel wires from waste tires", Sustainability, 14(20), 13360.
  7. Al-Azzawi, A.A., Saad, N. and Shakir, D. (2019), "Behavior of hybrid concrete beams with waste rubber", Comput. Concrete, Int. J., 23(4), 245-253. https://doi.org/10.12989/CAC.2019.23.4.245
  8. Almeshal, I., Al-Tayeb, M.M., Qaidi, S.M.A., Abu Bakar, B.H. and Tayeh, B.A. (2022), "Mechanical properties of eco-friendly cements-based glass powder in aggressive medium", Mater. Today: Proceedings, 58(4), 1582-1587. https://doi.org/10.1016/j.matpr.2022.03.613.
  9. Ali, B., Fahad, M., Ullah, S., Ahmed, H., Alyousef, R. and Deifalla, A. (2022), "Development of ductile and durable High Strength Concrete (HSC) through interactive incorporation of coir waste and silica fume", Materials, 15, 2616. https://doi.org/10.3390/ma15072616.
  10. Ansari, M. and Safiey, A. (2020), "Corrosion effects on mechanical behavior of steel fiber reinforced concrete, including fibers from recycled tires", Comput. Concrete, 26(4), 367-375. https://doi.org/10.12989/cac.2020.26.4.367.
  11. ANSYS (1998), ANSYS Inc., Canonsburg, Pensnsylvania.
  12. Ashok, M., Jayabalan, P., Saraswathy, V. and Muralidharan, S. (2020), "A study on mechanical properties of concrete including activated recycled plastic waste", Adv. Concrete Construct., 9(2), 207-215.
  13. Basaran, B., Kalkan, I., Aksoylu, C., Ozkilic, Y. O. and Sabri, M.M.S. (2022), "Effects of waste powder, fine and coarse marble aggregates on concrete compressive strength", Sustainability, 14(21), 14388.
  14. Beskopylny, A.N., Shcherban, E.M., Stel'makh, S.A., Meskhi, B., Shilov, A.A., Varavka, V. and Karalar, M. (2022), "Composition component influence on concrete properties with the additive of rubber tree seed shells", Appl. Sci., 12(22), 11744.
  15. Thomas, B.S., Gupta, R.C., Kalla, P. and Cseteneyi, L. (2014), "Strength, abrasion and permeation characteristics of cement concrete containing discarded rubber fine aggregates", Construct. Build. Mater., 59, 204-212. https://doi.org/10.1016/j.conbuildmat.2014.01.074. 
  16. Blasi, G. and Marianovella L. (2022), "Inverse analysis-based model for the tensile behaviour of fibre-reinforced concrete with manufactured and waste tyres recovered fibres", Case Studies Construct. Mater., 17, https://doi.org/10.1016/j.cscm.2022.e01297.
  17. Blessen S.T. and Ramesh C.G. (2016), "A comprehensive review on the applications of waste tire rubber in cement concrete", Renew. Sustain. Energy Rev., 54, 1323-1333. https://doi.org/10.1016/j.rser.2015.10.092.
  18. Chang, Q., Liu, L., Farooqi, M.U., Thomas, B. and Ozkilic, Y.O. (2023), "Data-driven based estimation of waste-derived ceramic concrete from experimental results with its environmental assessment", J. Mater. Res. Technol., 24, 6348-6368. https://doi.org/10.1016/j.jmrt.2023.04.223
  19. Chong B.W., Rokiah O., Tan W.S., Ramadhansyah P.J. and Mohd M.A.B.A. (2021), "Properties of mortar with waste tyre rubber as partial sand replacement", Modern Mater. Technol. Civil Road Eng., 879. 49-61.
  20. Celik, A.I., Ozkilic, Y.O., Zeybek, O ., O zdoner, N. and Tayeh, B.A. (2022), "Performance assessment of fiber-reinforced concrete produced with waste lathe fibers", Sustainability. 14(19), 11817. https://doi.org/10.3390/su141911817.
  21. Celik, A.I., Ozkilic, Y.O., Zeybek, O., Karalar, M., Qaidi, S., Ahmad, J., Burduhos-Nergis, D.D. and Bejinariu, C. (2022a), "Mechanical behavior of crushed waste glass as replacement of aggregates", Materials, 15(22), 8093. https://doi.org/10.3390/ma15228093.
  22. Chaikaew, C., Sukontasukkul, P., Chaisakulkiet, U., Sata, V. and Chindaprasirt, P. (2019), "Properties of concrete pedestrian blocks containing crumb rubber from recycle waste tyres reinforced with steel fibres", Case Studies Construct. Mater., 11, e00304, https://doi.org/10.1016/j.cscm.2019.e00304.
  23. Liu, F., W. Zheng, L. Li, W. and Feng, G. (2013), "Ning, Mechanical and fatigue performance of rubber concrete", Constr. Build. Mater. 47, 711-719. https://doi.org/10.1016/j.conbuildmat.2013.05.055.
  24. Fayed, S. and Mansour, W. (2020), "Evaluate the effect of steel, polypropylene and recycled plastic fibers on concrete properties", Adv. Concrete Construct., 10(4), 319-332. https://doi.org/10.12989/acc.2020.10.4.319.
  25. Guo, H.M. and Zhu, H. (2012), "Study on the structural properties of steel reinforced CRC beam-cracking resistance", Adv. Mater. Res., 374, 775-780. https://doi.org/10.4028/www.scientific.net/AMR.374-377.775.
  26. Guo, H.M. and Zhu., H. (2013), "Nonlinear finite element analysis for reinforced CRC beams", Adv. Civil Eng. Build. Mater., 185.
  27. Hadzima-Nyarko, M., Nyarko, K.E., Djikanovic, D. and Brankovic, G. (2021), "Microstructural and mechanical characteristics of self-compacting concrete with waste rubber", Struct. Eng. Mech., 78(2), 175-186. https://doi.org/10.12989/sem.2021.78.2.175.
  28. Han, Q.H., Wang, Y.H., Xu, J. and Xing, Y. (2016), "Fatigue behavior of stud shear connectors in steel and recycled tyre rubber-filled concrete composite beams", Steel Compos. Struct., 22(2), 353-368. https://doi.org/10.12989/scs.2016.22.2.353.
  29. Han, Q.H., Xu, J., Xing, Y. and Li, Z.L. (2015), "Static push-out test on steel and recycled tire rubber-filled concrete composite beams", Steel Compos. Struct, 19, 843-860. https://doi.org/10.12989/scs.2015.19.4.843.
  30. Han, Y., Shao, S., Fang, B., Shi, T., Zhang, B., Wang, X. and Zhao, X. (2023), "Chloride ion penetration resistance of matrix and interfacial transition zone of multi-walled carbon nanotube-reinforced concrete", J. Build. Eng., 72, 106587. https://doi.org/10.1016/j.jobe.2023.106587
  31. Huang, S., Wang, H., Ahmad, W., Ahmad, A., Ivanovich Vatin, N., Mohamed, A.M., Deifalla, A.F. and Mehmood, I. (2022), "Plastic waste management strategies and their environmental aspects: A scientometric analysis and comprehensive review", Int. J. Environ. Res. Public Health, 19, 4556. https://doi.org/10.3390/ijerph19084556.
  32. Huang, H., Huang, M., Zhang, W., Guo, M., Chen, Z. and Li, M. (2021), "Progressive collapse resistance of multistory RC frame strengthened with HPFL-BSP", J. Build. Eng., 43, 103123. https://doi.org/10.1016/j.jobe.2021.10312
  33. Huang, H., Li, M., Yuan, Y. and Bai, H. (2022a), "Theoretical analysis on the lateral drift of precast concrete frame with replaceable artificial controllable plastic hinges", J. Build. Eng., 62, 105386. https://doi.org/10.1016/j.jobe.2022.105386
  34. Huang, H., Huang, M., Zhang, W., Guo, M. and Liu, B. (2022b), "Progressive collapse of multistory 3D reinforced concrete frame structures after the loss of an edge column", Struct. Infrastruct. Eng., 18(2), 249-265. https://doi.org/10.1080/15732479.2020.1841245.
  35. Ismail, M.K. and Hassan, A.A. (2017), "Ductility and cracking behavior of reinforced self consolidating rubberized concrete beams", J. Mater. Civ. Eng. 29(1). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001699.
  36. Jusli, E., Md, Nor, H., Putra Jaya, R., Haron, Z. and M.A. (2014), "Effect of using waste tyre rubber on the properties of double layer rubberized concrete paving blocks", Jurnal Teknologi, 71(3). https://doi.org/10.11113/jt.v71.3750.
  37. Karalar, M., Bilir T. and Cavusli, M. (2020), "3D Experimental and numerical investigation on crack behaviour of RC beams under %75 bottom ash ratio", Structures20 Congress, August Seoul, Korea.
  38. Karalar, M. (2020), "Experimental and numerical investigation on flexural and crack failure of reinforced concrete beams with bottom ash and fly ash, Iran. J. Sci. Technol. Trans. Civ Eng., 44, 331-354. https://doi.org/10.1007/s40996-020-00465-y
  39. Karalar, M., Bilir, T., Cavuslu, M., Ozkilic, Y.O. and Sabri Sabri, M.M. (2022a), "Use of recycled coal bottom ash in reinforced concrete beams as replacement for aggregate", Front. Mater., 9, 1064604. https://doi.org/10.3389/fmats.2022.1064604.
  40. Karalar, M., Ozkilic, Y.O., Deifalla, A.F., Aksoylu, C., Arslan, M.H., Ahmad, M. and Sabri, M.M.S. (2022b), "Improvement in bending performance of reinforced concrete beams produced with waste lathe scraps", Sustainability, 14(19), 12660. https://doi.org/10.3390/su141912660.
  41. Karalar, M., Ozkilic, Y.O., Aksoylu, C., Sabri, M., Beskopylny, A. N., Stel'makh E, S.A. and Shcherban, E.M. (2022c), "Flexural behavior of reinforced concrete beams using waste marble powder towards application of sustainable concrete", Front. Mater., 701.
  42. Khaloo, A.R., Dehestani, M. and Rahmatabadi, P. (2008), "Mechanical properties of concrete containing a high volume of tireerubber particles", Waste Manag. 28, 2472-2482. https://doi.org/ 10.1016/j.wasman.2008.01.015. 
  43. Khaloo, Ali R., Dehestani M. and Rahmatabadi, P. (2008), "Mechanical properties of concrete containing a high volume of tire-rubber particles", Waste Manag., 28(12), 2472-2482. https://doi.org/10.1016/j.wasman.2008.01.015.
  44. Li, L., Ruan, S. and Zeng, L. (2014), "Mechanical properties and constitutive equations of concrete containing a low volume of tire rubber particles", Constr. Build. Mater. 70, 291-308. https://doi.org/10.1016/j.conbuildmat.2014.07.105.
  45. M Samindi M.K Samarakoon, Ruben, P., Pedersen, J.W. and Evangelista, L. (2019), "Mechanical performance of concrete made of steel fibers from tire waste", Case Studies Construct. Mater., 11, e00259, https://doi.org/10.1016/j.cscm.2019.e00259.
  46. Madenci, E., Fayed, S., Mansour, W. and Ozkilic, Y.O. (2022), "Buckling performance of pultruded glass fiber reinforced polymer profiles infilled with waste steel fiber reinforced concrete under axial compression", Steel Compos. Struct., 45(5), 652-663. https://doi.org/10.12989/scs.2022.45.5.652
  47. Mansour, W. and Fayed, S. (2021), "Flexural rigidity and ductility of RC beams reinforced with steel and recycled plastic fibers", Steel Compos. Struct., 41(3), 317-334. https://doi.org/10.12989/scs.2021.41.3.317.
  48. Mendis, A.S.M., Al-Deen, S. and Ashraf, M. (2017), "Effect of rubber particles on the flexural behaviour of reinforced crumbed rubber concrete beams", Construct. Build. Mater. 154, 644-657. https://doi.org/10.1016/j.conbuildmat.2017.07.220.
  49. Mendis, A.S.M., Al-Deen, S. and Ashraf, M. (2018), "Flexural shear behaviour of reinforced Crumbed Rubber Concrete beam", Construct. Build. Mater. 166, 779-791. https://doi.org/10.1016/j.conbuildmat.2018.01.150.
  50. Minchenkov, K., Vedernikov, A., Kuzminova, Y., Gusev, S., Sulimov, A., Gulyaev, A., Kreslavskaya, A., Prosyanoy, I., Xian, G., Akhatov, I. and Safonov, A. (2022), "Effects of the quality of pre-consolidated materials on the mechanical properties and morphology of thermoplastic pultruded flat laminates", Compos. Commun., 35. https://doi.org/10.1016/j.coco.2022.101281.
  51. Ozkilic, Y.O., Basaran, B., Aksoylu, C., Karalar, M. and Martins, C.H. (2023a), "Mechanical behavior in terms of shear and bending performance of reinforced concrete beam using waste fire clay as replacement of aggregate", Case Studies Construct. Mater., 18, e02104.
  52. Ozkilic, Y.O., Karalar, M., Aksoylu, C., Beskopylny, A.N., Stel'makh, S.A., Shcherban, E.M. and Azevedo, A.R. (2023b), "Shear performance of reinforced expansive concrete beams utilizing aluminium waste", J. Mater. Res. Technol., 24, 5433-5448. https://doi.org/10.1016/j.jmrt.2023.04.120
  53. Pierce, C.E. and Blackwell, M.C. (2003), "Potential of scrap tire rubber as lightweight aggregate in flowable fill", Waste Management 23. 197-208. https://doi.org/10.1016/S0956-053X(02)00160-5.
  54. Qaidi, S.M.A. and Al-Kamaki, Y.S.S. (2021), "State-of-the-art review: concrete made of recycled waste pet as fine aggregate", J. Duhok Univ., 23(2), 412-429. https://doi.org/10.26682/csjuod.2020.23.2.34.
  55. Qaidi, S.M.A., Dinkha, Y.Z., Haido, J.H., Ali,M.H. and Tayeh, B.A. (2021), "Engineering properties of sustainable green concrete incorporating eco-friendly aggregate of crumb rubber: A review," J. Cleaner Product., 324, https://doi.org/10.1016/j.jclepro.2021.129251.
  56. Qaidi, S.M.A., Tayeh, B.A., Ahmed, H.U. and Emad,W. (2022a), "A review of the sustainable utilisation of red mud and fly ash for the production of geopolymer composites", Construct. Build. Mater., 350, https://doi.org/10.1016/j.conbuildmat.2022.128892.
  57. Qaidi, S., Najm, H.M., Abed, S.M., Ozkilic, Y.O., Al Dughaishi, H., Alosta, M., Sabri, M.M.S., Alkhatib, F. and Milad, A. (2022b), "Concrete containing waste glass as an environmentally friendly aggregate: A review on fresh and mechanical characteristics", Materials, 15(18), 6222.
  58. Qaidi, S., Al-Kamaki, Y., Hakeem, I., Dulaimi, A.F., Ozkilic, Y., Sabri, M. and Sergeev, V. (2023), "Investigation of the physical-mechanical properties and durability of high-strength concrete with recycled PET as a partial replacement for fine aggregates", Front. Mater., 10, 1101146.
  59. Qin, Z., Jin, J., Liu, L., Zhang, Y., Du, Y., Yang, Y. and Zuo, S. (2023), "Reuse of soil-like material solidified by a biomass fly ash-based binder as engineering backfill material and its performance evaluation", J. Cleaner Product., 402, 136824. https://doi.org/10.1016/j.jclepro.2023.136824
  60. Reda Taha, M.M., El-Dieb, A.S., Abd El-Wahab, M. and Abdel-Hameed, M. (2008).,"Mechanical, fracture, and microstructural investigations of rubber concrete", J. Mater. Civ. Eng. 20, 640-649. https://doi.org/0.1061/(ASCE)0899-1561(2008)20:10(640). 1061/(ASCE)0899-1561(2008)20:10(640)
  61. Rindl, J. (1998), Recycling Manager, Recycling Manager, Dane County, Department of Public Works, Madison, USA.
  62. SAP2000 (2008). Integrated Finite Elements Analysis and Design of Structures, Computers and Structures, Inc., Berkeley, CA, USA,
  63. Shahjalal, Md., Islam,K., Rahman, J., Ahmed, K.S., Karim, M.R. and Muntasir Billah, A.H.M. (2021), "Flexural response of fiber reinforced concrete beams with waste tires rubber and recycled aggregate", J. Cleaner Product., 278, https://doi.org/10.1016/j.jclepro.2020.123842.
  64. Segre, N. and Joekes, I. (2000), "Use of tire rubber particles as addition to cement paste", Cement Concrete Res., 30, 1421-1425. https://doi.org/10.1016/S0008-8846(00)00373-2.
  65. Shayan, A. and Xu, A. (1999), "Utilization of glass as a pozzolonic material in concrete", ARRB TR Internal Report RC91132. https://doi.org/10.1016/j.cemconres.2005.12.012.
  66. Shi, T., Liu, Y., Zhao, X., Wang, J., Zhao, Z., Corr, D. J. and Shah, S.P. (2022), "Study on mechanical properties of the interfacial transition zone in carbon nanofiber-reinforced cement mortar based on the PeakForce tapping mode of atomic force microscope", J. Build. Eng., 61, 105248. https://doi.org/10.1016/j.jobe.2022.105248
  67. Siddique, R. and Naik, T.R. (2004), "Properties of concrete containing scrap-tire rubber-an overview", Waste Manage., 24(6), 563-569. https://doi.org/10.1016/j.wasman.2004.01.006.
  68. Sun, L., Wang, C., Zhang, C., Yang, Z., Li, C. and Qiao, P. (2022), "Experimental investigation on the bond performance of sea sand coral concrete with FRP bar reinforcement for marine environments", Adv. Struct. Eng., 26(3), 533-546. https://doi.org/10.1177/13694332221131153
  69. Tammam, Y., Uysal, M. and Canpolat, O. (2022), "Durability properties of fly ash-based geopolymer mortars with different quarry waste fillers", Comput. Concrete, 29(5).
  70. Tucci, F. and Vedernikov, A. (2021), "Design criteria for pultruded structural elements", Encyclopedia Mater. Compos., 51-68, https://doi.org/10.1016/B978-0-12-819724-0.00086-0.
  71. Vadivel, S., Thenmozhi, R. and Doddurani, M. (2012), "Experimental study on waste tyre rubber reinforced concrete", J. Struct. Eng., 39(3), 291-299.
  72. Vedernikov, A., Safonov, A., Tucci, F., Carlone, P. and Akhatov, I. (2021), "Analysis of spring-in deformation in L-shaped profiles pultruded at different pulling speeds: Mathematical simulation and experimental results", ESAFORM 2021. 24th International Conference on Material Forming, Liege, Belgique. https://doi.org/10.25518/esaform21.4743.
  73. Wang, M., Yang, X. and Wang, W. (2022), "Establishing a 3D aggregates database from X-ray CT scans of bulk concrete", Construct. Build. Mater., 315, 125740. https://doi.org/10.1016/j.conbuildmat.2021.125740.
  74. Weiguo, S., Lai, S., Tao Z., Hongkun, M., Zhi, C. and Hua S. (2013), "Investigation on polymer-rubber aggregate modified porous concrete", Constr Build Mater, 38, 667-674. https://doi.org/10.1016/j.conbuildmat.2012.09.006.
  75. Wei, C.B., Othman, R., Jaya, R.P., Doh, S.I., Li, X.F. and Ramli, N.I. (2021), "Properties of concrete with eggshell powder and tyre rubber crumb", Key Eng. Mater., 879, 34-48. https://doi.org/10.4028/www.scientific.net/KEM.879.34
  76. Zhang, W., Liu, X., Huang, Y. and Tong, M. (2022), "Reliability-based analysis of the flexural strength of concrete beams reinforced with hybrid BFRP and steel rebars", Archives Civil Mech. Eng., 22(4), 171. https://doi.org/10.1007/s43452-022-00493-7.
  77. Zeybek, O., Ozkilic, Y.O., Celik, A.I., Deifalla, A.F., Ahmad, M. and Sabri Sabri, M.M. (2022a), "Performance evaluation of fiber-reinforced concrete produced with steel fibers extracted from waste tire", Front. Mater., 692.
  78. Zeybek, O., Ozkilic, Y.O., Karalar, M., Celik, A.I., Qaidi, S., Ahmad, J., Burduhos-Nergis, D.D. and Burduhos-Nergis, D.P. (2022b), "Influence of replacing cement with waste glass on mechanical properties of concrete", Materials, 15(21), 7513. https://doi.org/10.3390/ma15217513
  79. Zhao, B., Wang, G., Wu, B. and Kong, X. (2023), "A study on mechanical properties and permeability of steam-cured mortar with iron-copper tailings", Construct. Build. Mater., 383, 131372. https://doi.org/10.1016/j.conbuildmat.2023.131372.
  80. Zhou, P., Li, C., Bai, Y., Dong, S., Xian, G., Vedernikov, A., Akhatov, I., Safonov, A. and Yue, Q. (2022), "Durability study on the interlaminar shear behavior of glass-fibre reinforced polypropylene (GFRPP) bars for marine applications", Construct. Build. Mater., 349, https://doi.org/10.1016/j.conbuildmat.2022.128694.