DOI QR코드

DOI QR Code

Using three-dimensional theory of elasticity for vibration analysis of laminated sectorial plates

  • Liyuan Zhao (School of Civil Engineering and Architecture, XinXiang University) ;
  • Man Wang (Zhengzhou University of Science and Technology) ;
  • Rui Yang (School of Civil Engineering and Architecture, XinXiang University) ;
  • Meng Zhao (Zaha Hadid Limited) ;
  • Zenghao Song (Henan Hangjian Anticorrosion Installation Engineering limited Cooperation) ;
  • N. Bohlooli (School of Civil Engineering, Urmia University)
  • Received : 2023.02.25
  • Accepted : 2023.04.26
  • Published : 2023.07.10

Abstract

The main goal of this paper is to study vibration of damaged core laminated sectorial plates with Functionally graded (FG) face sheets based on three-dimensional theory of elasticity. The structures are made of a damaged isotropic core and two external face sheets. These skins are strengthened at the nanoscale level by randomly oriented Carbon nanotubes (CNTs) and are reinforced at the microscale stage by oriented straight fibers. These reinforcing phases are included in a polymer matrix and a three-phase approach based on the Eshelby-Mori-Tanaka scheme and on the Halpin-Tsai approach, which is developed to compute the overall mechanical properties of the composite material. Three complicated equations of motion for the sectorial plates under consideration are semi-analytically solved by using 2-D differential quadrature method. Using the 2-D differential quadrature method in the r- and z-directions, allows one to deal with sandwich annular sector plate with arbitrary thickness distribution of material properties and also to implement the effects of different boundary conditions of the structure efficiently and in an exact manner. The fast rate of convergence and accuracy of the method are investigated through the different solved examples. The sandwich annular sector plate is assumed to be simply supported in the radial edges while any arbitrary boundary conditions are applied to the other two circular edges including simply supported, clamped and free. Several parametric analyses are carried out to investigate the mechanical behavior of these multi-layered structures depending on the damage features, through-the-thickness distribution and boundary conditions.

Keywords

References

  1. Abo-Dahab, S.M., Abouelregal, A.E. and Marin, M. (2020), "Generalized Thermoelastic Functionally Graded on a Thin Slim Strip Non-Gaussian Laser Beam", Symmetry, 12(7), No. 1094.
  2. Ahmed Houari, M.S., Bessaim, A., Bernard, F., Tounsi, A. and Mahmoud, S.R. (2018), "Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter", Steel Compos. Struct., 28(1), 13-24. https://doi.org/10.12989/scs.2018.28.1.013.
  3. Arefi, M. (2015), "Elastic solution of a curved beam made of functionally graded materials with different cross sections", Steel Compos. Struct., 18(3), 659-672. https://doi.org/10.12989/scs.2015.18.3.659.
  4. Alzahrani, F., Hobiny, A., Abbas, I. and Marin, M. (2020), "An eigenvalues approach for a two-dimensional porous medium based upon weak, normal and strong thermal conductivities", Symmetry, 12(5), No. 848.
  5. Bacciocchi, M. and Tarantino, A.M., (2019), "Time-dependent behavior of viscoelastic three-phase composite plates reinforced by carbon nanotubes", Compos. Struct., 216, 20-31. https://doi.org/10.1016/j.compstruct.2019.02.083.
  6. Barka, M., Benrahou, K.H., Bakora, A. and Tounsi, A. (2016), "Thermal post-buckling behavior of imperfect temperature-dependent sandwich FGM plates resting on Pasternak elastic foundation", Steel Compos. Struct., 22(1), 91-112. https://doi.org/10.12989/scs.2016.22.1.091.
  7. Bennai, R., Ait Atmane, H. and Tounsi, A. (2015), "A new higher-order shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., 19(3), 521-546. https://doi.org/10.12989/scs.2015.19.3.521.
  8. Benson, P.R. and Hinton, E. (1976), "A thick finite strip solution for static, free vibration and stability problems", Int. J. Numer. Methods Eng., 10(3), 665-678. https://doi.org/10.1002/nme.1620100314.
  9. Bouchafa, A., Bouiadjra, M.B., Houari, M.S.A. and Tounsi, A. (2015), "Thermal stresses and deflections of functionally graded sandwich plates using a new refined hyperbolic shear deformation theory", Steel Compos. Struct., 18(6), 1493-1515. https://doi.org/10.12989/scs.2015.18.6.1493.
  10. Bouguenina, O., Belakhdar, K., Tounsi, A. and Bedia, E.A.A. (2015), "Numerical analysis of FGM plates with variable thickness subjected to thermal buckling", Steel Compos. Struct., 19(3), 679-695. https://doi.org/10.12989/scs.2015.19.3.679.
  11. Chen, C.S., Liu, F.H. and Chen, W.R. (2017), "vibration and stability of initially stressed sandwich plates with FGM face sheets in thermal environments", Steel Compos. Struct., 23(3), 251-261. https://doi.org/10.12989/scs.2017.23.3.251.
  12. Cheung, M.S. and Chan, M.Y.T. (1981), "Static and dynamic analysis of thin and thick sectorial plates by the finite strip method", Comput. Struct., 14(1-2), 79-88. https://doi.org/10.1016/0045-7949(81)90086-9.
  13. Eshelby, J.D. (1957), "The determination of the elastic field of an ellipsoidal inclusion, and related problems", P. Roy. Soc. Lond. A Mat., 241, 376-396. https://www.jstor.org/stable/100095. 100095
  14. Fidelus, J.D., Wiesel, E., Gojny, F.H., Schulte, K. and Wagner, H.D. (2005), "Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites", Compos. Part A, 36, 1555-1561. https://doi.org/10.1016/j.compositesa.2005.02.006.
  15. Ghavamian, A., Rahmandoust, M. and Ochsner, A. (2012), "A numerical evaluation of the influence of defects on the elastic modulus of single and multi-walled carbon nanotubes", Comput. Mater. Sci., 62, 110-116. https://doi.org/10.1016/j.commatsci.2012.05.003.
  16. Gojny, F.H., Wichmann, M.H.G., Fiedler, B. and Schulte, K. (2005), "Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites-A comparative study", Compos. Sci. Technol., 65, 2300-2313. https://doi.org/10.1016/j.compscitech.2005.04.021.
  17. Guruswamy, P. and Yang, T.Y. (1979), "A sector finite element for dynamic analysis of thick plates, J. Sound Vib., 62(4), 505-516. https://doi.org/10.1016/0022-460X(79)90459-0.
  18. Halpin, J.C. and Tsai, S.W. (1969), "Effects of environmental factors on composite materials", AFML-TR-67-423.
  19. Hill, R. (1964a), "Theory ofmechanical properties of fibre-strengthened materials Elastic behavior", J. Mech. Phys. Solids, 12, 199-212. https://doi.org/10.1016/0022-5096(64)90019-5.
  20. Hill, R. (1964b), "Theory of mechanical properties of fibre"strengthened materials: II. Inelastic behavior", J. Mech. Phys. Solids, 12, 213-218. https://doi.org/10.1016/0022-5096(64)90020-1.
  21. Houmat, A. (2001), "A sector Fourier p-element applied to free vibration analysis of sectorial plates", J. Sound Vib., 243(2), 269-282. https://doi.org/10.1006/jsvi.2000.3410.
  22. Kim, C.S. and Dickinson, S.M. (1989), "On the free, transverse vibration of annular and circular, thin, sectorial plates subjected to certain complicating effects", J. Sound Vib., 134(3), 407-421. https://doi.org/10.1016/0022-460X(89)90566-X.
  23. Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Design, 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061.
  24. Koizumi, M. (1993), "The concept of FGM", Ceram. Trans. Funct. Grad. Mater., 34, 3-10.
  25. Leissa, A.W., McGee, O.G. and Huang, C.S. (1993), "Vibrations of sectorial plates having corner stress singularities", J. Appl. Mech. Transactions ASME, 60(1), 134-140. https://doi.org/10.1115/1.2900735.
  26. Lemaitre, J. and Chaboche, J.L., (1990), Mechanics of Solid Materials, Cambridge University Press, New York, NY, USA.
  27. Liew, K.M. and Lam, K.Y. (1993), "On the use of 2-d orthogonal polynomials in the Rayleigh-Ritz method for flexural vibration of annular sector plates of arbitrary shape", Int. J. Mech. Sci., 35(2), 129-139. https://doi.org/10.1016/0020-7403(93)90071-2.
  28. Liew, K.M. and Liu, F.L. (2000), "Differential quadrature method for vibration analysis of shear deformable annular sector plates", J. Sound Vib., 230(2), 335-356. https://doi.org/10.1006/jsvi.1999.2623.
  29. Liu, R. and Wang, L. (2015), "Thermal vibration of a single-walled carbon nanotube predicted by semiquantum molecular dynamics", Phys. Chemistry Chemical Physics, 7. https://doi.org/10.1039/C4CP05495D.
  30. Marin, M. and Marinescu, C. (1998), "Thermoelasticity of initially stressed bodies, Asymptotic equipartition of energies", Int. J. Eng. Sci., 36(1), 73-86. https://doi.org/10.1016/S0020-7225(97)00019-0.
  31. Marin, M., Ellahi, R., Vlase, S. and Bhatti, M.M. (2020), "On the decay of exponential type for the solutions in a dipolar elastic body", J. Taibah Univ. Sci., 14(1), 534-540. https://doi.org/10.1080/16583655.2020.1751963
  32. Martone, A., Faiella, G., Antonucci, V., Giordano, M. and Zarrelli, M. (2011), "The effect of the aspect ratio of carbon nanotubes on their effective reinforcement modulus in an epoxy matrix", Compos. Sci. Technol., 71(8), 1117-1123. https://doi.org/10.1016/j.compscitech.2011.04.002.
  33. McGee, O.G., Huang, C.S. and Leissa, A.W. (1995), "Comprehensive exact solutions for free vibrations of thick annular sectorial plates with simply supported radial edges", Int. J. Mech. Sci., 37(5), 537-566. https://doi.org/10.1016/0020-7403(94)00050-T.
  34. Mizusawa, T. (1991), "Vibration of thick annular sector plates using semi-analytical methods", J. Sound Vib., 150(2), 245-259. https://doi.org/10.1016/0022-460X(91)90619-U.
  35. Montazeri, A., Javadpour, J., Khavandi, A., Tcharkhtchi, A. and Mohajeri, A. (2010), "Mechanical properties of multi-walled carbon nanotube/epoxy composites", Mater. Des., 31, 4202-4208. https://doi.org/10.1016/j.matdes.2010.04.018.
  36. Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with misfitting inclusions", Acta Metall., 21, 571-574. https://doi.org/10.1016/0001-6160(73)90064-3.
  37. Mukhopadhyay, M. (1979), "A semi-analytic solution for free vibration of annular sector plates", J. Sound Vib., 63(1), 87-95. https://doi.org/10.1016/0022-460X(79)90379-1.
  38. Mukhopadhyay, M. (1982), "Free vibration of annular sector plates with edges possessing different degrees of rotational restraints", J. Sound Vib., 80(2), 275-279. https://doi.org/10.1016/0022-460X(82)90196-1.
  39. Nie, G.J. and Zhong, Z. (2008), "Vibration analysis of functionally graded annular sectorial plates with simply supported radial edges", Compos. Struct., 84(2), 167-176. https://doi.org/10.1016/j.compstruct.2007.07.003.
  40. Odegard, G.M., Gates, T.S., Wise, K.E., Park, C. and Siochi, E.J. (2003), "Constitutive modeling of nanotube-reinforced polymer composites", Compos. Sci. Technol., 63, 1671-1687. https://doi.org/10.1016/S0266-3538(03)00063-0.
  41. Othman, M.I.A., Fekry, M. and Marin, M. (2020), "Plane waves in generalized magneto-thermo-viscoelastic medium with voids under the effect of initial stress and laser pulse heating", Struct. Eng. Mech., 73(6), 621-629. https://doi.org/10.12989/SEM.2020.73.6.621
  42. Park, W.T., Han, S.C., Jung, W.Y. and Lee, W.H. (2016), "Dynamic instability analysis for S-FGM plates embedded in Pasternak elastic medium using the modified couple stress theory", Steel Compos. Struct., 22(6), 1239-1259. https://doi.org/10.12989/scs.2016.22.6.1239.
  43. Ramaiah, G.K. and Vijayakumar, K. (1974), "Natural frequencies of circumferentially truncated sector plates with simply supported straight edges", J. Sound Vib., 34(1), 53-61. https://doi.org/10.1016/S0022-460X(74)80354-8.
  44. Ramakris, R. and Kunukkas, V.X. (1973), "Free vibration of annular sector plates", J. Sound Vib., 30(1), 127-129. https://doi.org/10.1016/0022-460X(83)90546-1.
  45. Rao, M.N., Guruswamy, P. and Sampath Kumaran, K.S. (1977), "Finite element analysis of thick annular and sector plates", Nucl. Eng. Des., 41(2), 247-255. https://doi.org/10.1016/0029-5493(77)90113-3.
  46. Scutaru, M.L., Vlase, S., Marin, M. and Modrea, A. (2020), "New analytical method based on dynamic response of planar mechanical elastic systems", Bound. Value Probl., 2020(1), No. 104.
  47. Seok, J.W. and Tiersten, H.F. (2004), "Free vibrations of annular sector cantilever plates part 1:out-of-plane motion", J. Sound Vib., 271(3-5), 757-772. https://doi.org/10.1016/S0022-460X(03)00414-0.
  48. Sharma, A., Sharda, H.B. and Nath, Y. (2005a), "Stability and vibration of Mindlin sector plates: an analytical approach", AIAA J., 43(5), 1109-1116. https://doi.org/10.2514/1.4683.
  49. Sharma, A., Sharda, H.B. and Nath, Y. (2005b), "Stability and vibration of thick laminated composite sector plates", J. Sound Vib., 287(1-2), 1-23. https://doi.org/10.1016/j.jsv.2004.10.030.
  50. Shi, D.L., Huang, Y.Y., Hwang, K.C. and Gao, H., (2004), "The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube"reinforced composites", J. Eng. Mater. T. ASME, 126, 250-257. https://doi.org/10.1115/1.1751182.
  51. Shu, C. (2000), Differential Quadrature and Its Application in Engineering, Springer, Berlin.
  52. Srinivasan, R.S. and Thiruvenkatachari, V. (1983), "Free vibration of annular sector plates by an integral equation technique", J. Sound Vib., 89(3), 425-432. https://doi.org/10.1016/0022-460X(83)90546-1
  53. Srinivasan, R.S. and Thiruvenkatachari, V. (1986), "Free vibration analysis of laminated annular sector plates", J. Sound Vib., 109(1), 89-96. https://doi.org/10.1016/0022-460X(83)90546-1.
  54. Swaminadham, M., Danielski, J. and Mahrenholtz, O. (1984), "Free vibration analysis of annular sector plates by holographic experiments", J. Sound Vib., 95(3), 333-340. https://doi.org/10.1016/0022-460X(83)90546-1.
  55. Tahouneh, V. (2016), "Using an equivalent continuum model for 3D dynamic analysis of nanocomposite plates", Steel Compos. Struct., 20(3), 623-649. https://doi.org/10.12989/scs.2016.20.3.623.
  56. Tahouneh, V. (2017), "The effect of carbon nanotubes agglomeration on vibrational response of thick functionally graded sandwich plates", Steel Compos. Struct., 24(6), 711-726. https://doi.org/10.12989/scs.2017.24.6.711.
  57. Tahouneh, V., Naei, M.H. and Mosavi Mashhadi, M. (2019), "Using IGA and trimming approaches for vibrational analysis of L-shape graphene sheets via nonlocal elasticity theory", Steel Compos. Struct., 33(5), 717-727. https://doi.org/10.12989/scs.2019.33.5.717.
  58. Tahouneh, V., Naei, M.H. and Mosavi Mashhadi, M. (2020), "Influence of vacancy defects on vibration analysis of graphene sheets applying isogeometric method: Molecular and continuum approaches", Steel Compos. Struct., 34(2), 261-277. https://doi.org/10.12989/scs.2020.34.2.261.
  59. Tornabene, F., Bacciocchi, M., Fantuzzi, N. and Reddy, J.N. (2019), "Multiscale approach for three-phase CNT/Polymer/Fiber laminated nanocomposite structures", Polymer Compos., In Press, https://doi.org/10.1002/pc.24520.
  60. Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2017), "Foam core composite sandwich plates and shells with variable stiffness: Effect of the curvilinear fiber path on the modal response", J. Sandw. Struct. Mater., 21(1), 320-365. https://doi.org/10.1177/1099636217693623.
  61. Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2019), "Refined shear deformation theories for laminated composite arches and beams with variable thickness: Natural frequency analysis", Eng. Anal. Bound. Elem., 100, 24-47. https://doi.org/10.1016/j.enganabound.2017.07.029.
  62. Tornabene, F., Fantuzzi, N., Ubertini, F. and Viola, E. (2015), "Strong formulation finite element method based on differential quadrature: A survey", Appl. Mech. Rev., 67(2), 1-55. https://doi.org/10.1115/1.4028859.
  63. Tsai, S.W. (1965), Strength Characteristics of Composite Materials, Philco Corporation: Newport Beach, CA, USA,
  64. Tsai, S.W. (1964), Structural Behavior of Composite Materials, Philco Corporation: Newport Beach, CA, USA.
  65. Wagner, H.D., Lourie, O. and Feldman, Y. (1997), "Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix", Appl. Phys. Lett., 72(2), 188-190. https://doi.org/10.1063/1.120680.
  66. Wu, C.P. and Liu, Y.C. (2016), "A state space meshless method for the 3D analysis of FGM axisymmetric circular plates", Steel Compos. Struct., 22(1), 161-182. https://doi.org/10.12989/scs.2016.22.1.161.
  67. Xiang, Y., Liew, K.M. and Kitipornchai, S. (1993), "Transverse vibration of thick annular sector plates", J. Eng. Mech. ASCE, 119(8), 1579-1599. https://doi.org/10.1061/(ASCE)07339399(1993)119:8(1579).
  68. Xu, W., Wang, L. and Jiang, J. (2016), "Strain gradient finite element analysis on the vibration of double-layered graphene sheets", Int. J. Comput. Meth., 13(3). https://doi.org/10.1142/S0219876216500110.
  69. Yeh, M.K., Tai, N.H. and Liu, J.H. (2006), "Mechanical behavior of phenolic-based composites reinforced with multi-walled carbon nanotubes", Carbon, 44(1), 1-9. https://doi.org/10.1016/j.carbon.2005.07.005.
  70. Zhang, Y. and Wang, L. (2018), "Thermally stimulated nonlinear vibration of rectangular single-layered black phosphorus", J. Appl. Phy., 124(13), 10.1063/1.5047584. https://doi.org/10.1063/1.5047584.
  71. Zhou, D., Lo, S.H. and Cheung, Y.K. (2009), "3-D vibration analysis of annular sector plates using the Chebyshev-Ritz method", J.Sound Vib., 320(1-2), 421-437. https://doi.org/10.1016/j.jsv.2008.08.001.
  72. Zhu, X.H. and Meng, Z.Y. (1995), "Operational principle fabrication and displacement characteristics of a functionally gradient piezoelectricceramic actuator", Sens. Actuators, 48(3), 169-176. https://doi.org/10.1016/0924-4247(95)00996-5.