KYUNGPOOK Math. J. 63(2023), 167-173
https://doi.org/10.5666 /KMJ.2023.63.2.167
pISSN 1225-6951  eISSN 0454-8124
© Kyungpook Mathematical Journal

An Upper Bound for the Probability of Generating a Finite
Nilpotent Group

HALIMEH MADADI

Department of Mathematics, Miyaneh Branch, Islamic Azad University, Miyaneh,
Iran

e-mail : halime_madadi@yahoo.com

SEYYED MAJID JAFARIAN AMIRI
Department of Mathematics, Faculty of Sciences, University of Zanjan, P. O. Box
45371-38791, Zangjan, Iran

e-mail : sm_jafarian@znu.ac.ir

HoJssAaT RosTtamr*
epartment of Mathematics, Farhangian University, Tehran, Iran
e-mail : h.rostami59910gmail . com

ABSTRACT. Let G be a finite group and let v(G) be the probability that two randomly
selected elements of G produce a nilpotent group. In this article we show that for every
positive integer n > 0, there is a finite group G such that v(G) = % We also classify all
groups G with v(G) = %. Further, we prove that if G is a solvable nonnilpotent group of
even order, then v(G) < 1%3, where p is the smallest odd prime divisor of |G|, and that
equality exists if and only if %(G) is isomorphic to the dihedral group of order 2p where
Z+(G) is the hypercenter of G. Finally we find an upper bound for v(G) in terms of |G|

where G ranges over all groups of odd square-free order.

1. Introduction

In the past 40 years, there has been a growing attention in the application of
probability in finite groups (for example see [8, 16]). In this paper, we denote by
v(G) the probability that two randomly selected elements of G produce a nilpotent
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subgroup. In other words we have

W(G) = {(z,y) € G x G : {w,y) is nilpotent}|
G2

The notion v(G) is introduced in [11] on the model of the commutativity degree,

via

~ H(z,y) € GxG:(x,y) is abelian}|

G
Cp( ) |G‘2
Note that for =,y € G, we have xy = yz if and only if (x,y) is abelian.
It is easy to see that cp(G) = W where Cg(x) is the centralizer of x

in G as Cg(x) is a subgroup of G for any = € G.
Similarly if
Nilg(xz) = {y € G|{z,y) is nilpotent},

then )
> wec | Nila(z)|

MO==ap

However, Nilg(x) is not necessarily a subgroup of G, and so it is difficult to
glean information about a group G from v(G).

A finite group G is nilpotent if and only if ¥(G) = 1 (see Theorem 1 of [5]).
On the other hand, Wilson [16] showed that in finite groups G the probability that
two random elements of G produce a nilpotent group goes to 0 as the index of the
Fitting subgroup of G goes to infinity.

Gustafson [8] proved that if G is a non-abelian group, then ¢p(G) < %,
that equality holds if and only if % is isomorphic to the Kelian four-group Zs x

and

Zs. Several authors determined the structure of a finite group G when cp(G) is
sufficiently large, see [2, 9, 12].

In [7] Guralnick and Wilson found that if G is a nonnilpotent group, then
v(G) < 1. In this paper we classify groups G with v(G) = 1 (see Proposition 2.6).

It is easy to see that cp(As) = v(As5) = 73 where As is the alternating group
of degree five. Dixon observed that cp(G) < & for any finite nonabelian simple
group G. This was submitted by Dixon as a problem in Canadian Math. Bulletin,
13 (1970), with his own solution appearing in 1973. Guralnick and Robinson [6]
extended this result to nonsolvable groups and determined precisely for which non-
solvable groups the equality happens. Recently in [10] the authors of the present
paper showed that if G is a group such that Nilg(z) is a subgroup of G for every
z € G and v(G) > 75, then G is solvable.

Fulman et al. [5] proved that if G is a solvable nonnilpotent group and p is the
smallest prime number that divides |G|, then v(G) < 1% and equality holds if and

only if p = 2 and ZL(G) is isomorphic to the dihedral group of order 6 (see [5]).
Here Z..(@G) is the hypercenter of G (i.e. the terminal term of the upper central
series of G, see [3, 13]). In this article we improve this upper bound as follows.
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Theorem 1.1. Suppose that G is a solvable nonnilpotent group of even order.
Then v(G) < p%:’ where p is the smallest odd prime number that divides |G|; equal-

ity holds if and only if -—%— = Da,, is the dihedral group of order 2p.
LA (el(e)) P

For a prime p we denote by Z}’,f the elementary abelian group of order p*. We
propose the following conjecture for every nonnilpotent group of odd order.
Conjecture Let G be a finite solvable nonnilpotent group such that |G| =

i, n2

Pyt py* - pit where 2 < pyp < -+ < p, are primes. Then

prpt o1

ti, 2
i P

tr 2
P +pr—1 v o
v(G) < E——t— ptk]; = max{ pilpt —1,1<j<i<r1<t <n;}
k Fl

for some 1 <1 < k <r and equality holds if and only if %(G) ~ Z;t)ﬁ X Zp,. We

think that this conjecture is true for the class of N-groups, introduced by Abdollahi
and Zarrin in [1], which are the groups in which Nilg(z) is a nilpotent group for
every © € G\ Zoo(G). We feel that the method used in proof of main theorem of
[15] may be useful in proving this.

In Section 2 we compute v(G) for Frobenius groups and Dihedral groups. We
also prove that for any positive integer n, there is a group G such that v(G) = %
Finally we classify all groups G with v(G) = 3. In Section 3 we verify Theorem
1.1 and, with Theorem 3.2, confirm the above conjecture for groups of square-free
order.

In this article G is a finite group and Z..(G) is its hypercenter. Most notation

we use is standard and follows [14].

2. Computing v(G) for Certain Groups
The following lemmas are very useful in the sequel.

Lemma 2.1. Suppose that G is a group. Then v(G) = v(5S=).

(e

Proof. See Corollary 3 of [5]. a
Lemma 2.2. Suppose that G and H are finite groups. Then v(G x H) = v(G) x
v(H).

Proof. The proof is not complicated. o

Proposition 2.3. If G = H x K is a Frobenius group where the Frobenius kernel

is K and the complement is H, then v(G) = ﬁ(l — ﬁ) + V(If‘),

Proof. By hypothesis, we have Cg(h) C H foreach 1 # h € H, Cg(k) C K for each
1#keKand HNH?* =1 for each x € G\ H. Now if (hik1, hoks) is nilpotent
such that hi,hy € H and ki,ks € K, then hy = hg = 1 or ky = ks = 1. On the
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other hand {K, (H® — 1)|z € K} is a partition of G and since K is nilpotent, we
are done. O

Corollary 2.4. Suppose that G is the dihedral group of order 2"n where r > 1 and

n is odd. Then v(G) = %E3.

Dory,, ~

Proof. Since 2oy = Dyr—1,, for r > 1, by Lemma 2.1 we conclude that v(Dary,) =

v(Dgr-1,,) =+ -+ = v(Day,). Since n is odd, Dy, is a Frobenious group with the cyclic
kernel of order n and so we are done by Proposition 2.3. O

Corollary 2.5. For any integer n > 0, there is a group G of even order such that
v(G) =1
Proof. Our proof is by induction on n. If n € {1,2,3}, then the result holds since
v(Dg) =1, v(Dg) = § and v(Dis) = 5. So assume that n > 4 and the that the
result holds for all positive integers m < n. If n is even, then there is a group H
where v(H) = 2 by induction hypothesis and so v(H x Dg) = % by Lemma 2.2.
Suppose that n is odd, then n = 4m + 1 or n = 4m + 3 for some positive integer m.
It follows from Corollary 2.4 that v(Daum+1)) = %‘H and v(Da(12m+9)) = mTH
Since m + 1 < n, we are done by induction hypothesis and Lemma 2.2. This
completes the proof. O

In the following we classify all groups G with v(G) = %

Proposition 2.6. Suppose that G is a finite group (not necessarily solvable). Then
v(G) = % if and only if %(G) & Dg, the dihedral group of order 6.

Proof. We get necessity by By Lemma 2.1. Conversely if v(G) = %, then the
probability of solvability of G is equal or greater than % and so G is solvable by
[7]. By Theorem 5 of [5], we conclude that v(G) < 3 and equality holds when

%(G) = Dg, as needed. O

3. Upper Bound for v(G)

S. Franciosi and F. Giovanni defined and studied a JNN group as a group all
of whose proper quotients are nilpotent (see [4] and [5], Definition 1). It should be
noted that a finite group G is a JNN group if and only if G = L x A where A is an
elementary abelian p-group and L is a nilpotent group such that p dose not divide
the order of G and the action of L on A is faithful and irreducible (See Theorem 4
of [5] and what follows it).

Proof of Theorem 1.1.
If p = 3, then ¥(G) = 1 — 1vy(G) < 5 by Theorem 5 of [5] and equality holds if

and only if ZL(G) > Dg. So we assume that the smallest odd prime divisor of

|G| is greater than 3. It is enough to prove the result for JNN groups. For if G
is a counterexample of minimal order, then there is a nontrivial normal subgroup
K of G such that % is nonnilpotent (since G is solvable). Suppose that r is the
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smallest odd prime that divides |£|. If £ is of even order, then v(G) < v(£) <
% < % because r > p. Also if % is of odd order, then by Theorem 5 of [5],
v(G) <v(g)<l<ic p4—+3 which gives a contradiction. So let us assume that
G isa JNN group. Then G = L x A where L &£ P, X P,_y X --- X P, P;’s are
the unique Sylow p;-subgroups of L and A is an elementary abelian g-group. By
setting N = Py_1 X --- X (P; X A) we have G = P, x N. We claim that if ¢ = 2
and 1 # x,, € Py, then [Ce(z,) N| < |5

Assume that |A| = 2! (t > 2) and H = Cg(z,) N A. If |H| = 27! and
a € A\ H, then a™ = ahy for some hy € H. Hence a®r = a®*h; = ah? = a
and so b% = b for all b € A. But Py acts faithfully on A which implies that
xz% = 1, obviously absurd. Hence |H| < 272, If M := Py_1 X Py_3 x -+ X P;, then
Ca(wp)NN = M(Cg(x,)NA) = MH and so |Co(x,)NN| = |M||H| = Gt[H| < E,
as claimed.

Now we want to count the ordered pairs (z,y) in a fixed pair (a1 N,asN) for
some ap,as € G where (x,y) is nilpotent. By page 14 of [5], the probability that a
selected pair (z,y) from the coset pair (x,NN,y,N) generates a nilpotent subgroup

is not greater than ‘Cc(m”)mlglc(y") AN and by our claim this probability is equal

or less than %.

Now we continue by induction on the number & of prime divisors of |L|. Here
our aim is showing that if the upper bound mentioned in the assertion is correct for
N, it is correct for G too. As mentioned above if ¢ = 2, then there is nothing to
prove. So assume that g # 2. Since the action of P, on A is faithful, in a similar
way it can be seen that |Cg(z,) [ N| < %. If ¢ > 5, then this probability is

equal or less than % < i < thf and by the assumption on N, we conclude that

v(GQ) < p%j’. Also it is not hard to see that if £ > 2, then the equality does not hold,
since in this case N is not an elementary group and as mentioned above above in
both cases, whether ¢ is equal to 2 or not, the probability is less than i < p4—+3. So
it is enough to prove it for the base step of the induction. Assume that G = Rx A
where A = (Z,)", R is a Sylow r-subgroup and |R| = ™. Then we investigate two

cases:
2n 2n, .2 2 1
227 4 (2272 927y 1

Case 1: Assume that ¢ = 2. Then v(G) < Sz . Sov(G) <
Tj:;IB < % . As one can see, equality cannot hold in this case.
20 (,2n92m _ 20y 1 2m
Case 2: Suppose that 7 = 2. Then v(G) < g Ha anzqu )Xy _ 2 q;gjl and

since ¢ # 3, we have % < %}3 and equality holds if and only if m = 1 and

hence G = Z; x (Z,)™. Now we claim that n = 1.

Let 1 #a€ Aand 1 # x € R. If a® = a, then (a") = (a) and since the action of
R on A is irreducible, we have (a) = A. Henceforth G = Zy x Z; = Dy,. Otherwise,

it can be assumed that Cq(R)[)A = 1, which results that G = Z; x (Z,)" is a
Frobenius group. It follows that v(G) = % (see Proposition 2.1). This implies

that the equality exists in our assertion if and only if n = 1 and G = Dy, while G
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is a JNN group.
Now if G is not a JN N group, so there is a normal subgroup N of G such that

% is a JNN because G is solvable. Let v(G) = p4—+p3 where p is the smallest odd

prime that divides |G| and % is of even order and ps be the smallest odd prime

that divides the order of £. Then % =v(G) <v(§) < }’ZTIB’ which implies that

p = ps and % & Dy,. Now by an argument similar to that on page 16 of [5] it can
G ~

be proved that 720 = Do, Let % be of odd order and ps > 3 be its smallest

prime divisor. Then p4—+p?’ =v(G) < V(%) < pi, our final contradiction. O

For an odd prime p, we denote by &,, the set of all solvable nonnilpotent groups
G of even order such that p is the smallest odd prime that divides the order of G.

Corollary 3.1. Suppose that G € &, where p is an odd prime . Then v(G) is the

largest value of v on &, if and only if ZOOGEG) 2 Dy,y.

Theorem 3.2. Suppose that G is a finite group of odd order and |G| = pip2 - pr
where p1 < --- < p, are primes. Then we have

pitp;—1

2
1

v(G) < Petpi— D max{ 5

bip;

pilpi —1L1<j<i<r
PP} ilp: J
for some 1 <1 <k <r and the equality holds if and only if %(G) = Zp XN Zp,.

Proof. Similar to the proof of Theorem 1.1 we prove it for JNN groups. Let
G =Lx Abea JNN group and let p; < p2 < --- < p,. Then A = Z, and
p1pe - Pr—1|pr — 1 since L acts faithfully on A. We proceed by induction as it
was done in the Theorem 1.1. Thus set N < G such that |N| = paps---p.. It
follows that G = P; x N. We claim that if the assertion is correct for N it will
be correct for G too. It is not hard to see that the probability that a pair selected
from the coset pair (z,N,y,NN) for some x,,y, € P; generates a nilpotent subgroup

of G is bounded by [Ca () ﬂlglc(yp)ﬂN\_ But the action of P; on A is faithful and

then if both z;, and y, are not identity, then 6 (2p) r]'gf(y”)ﬂm < pi. Now since

o ! Ipjlpi —1,1 <,j < r}, one can conclude that the bound is right
iPj

and the equality does not hold when r > 3. Coming back to the base of induction,

2

let |G| = pip2 with p1 < p2. Then G = Z,,, x Z,, and v(G) = %, as wanted.
1

O

2
1 pi+p;—
— < max
Pr { p
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