An Upper Bound for the Probability of Generating a Finite Nilpotent Group

Halimeh Madadi

Department of Mathematics, Miyaneh Branch, Islamic Azad University, Miyaneh, Iran

 $e ext{-}mail: halime_madadi@yahoo.com}$

SEYYED MAJID JAFARIAN AMIRI

Department of Mathematics, Faculty of Sciences, University of Zanjan, P. O. Box 45371-38791, Zanjan, Iran

e-mail: sm_jafarian@znu.ac.ir

Hojjat Rostami*

 $epartment\ of\ Mathematics,\ Farhangian\ University,\ Tehran,\ Iran$

 $e ext{-}mail: h.rostami5991@gmail.com}$

ABSTRACT. Let G be a finite group and let $\nu(G)$ be the probability that two randomly selected elements of G produce a nilpotent group. In this article we show that for every positive integer n>0, there is a finite group G such that $\nu(G)=\frac{1}{n}$. We also classify all groups G with $\nu(G)=\frac{1}{2}$. Further, we prove that if G is a solvable nonnilpotent group of even order, then $\nu(G)\leq \frac{p+3}{4p}$, where p is the smallest odd prime divisor of |G|, and that equality exists if and only if $\frac{G}{Z_{\infty}(G)}$ is isomorphic to the dihedral group of order 2p where $Z_{\infty}(G)$ is the hypercenter of G. Finally we find an upper bound for $\nu(G)$ in terms of |G| where G ranges over all groups of odd square-free order.

1. Introduction

In the past 40 years, there has been a growing attention in the application of probability in finite groups (for example see [8, 16]). In this paper, we denote by $\nu(G)$ the probability that two randomly selected elements of G produce a nilpotent

Received February 17, 2022; revised December 24, 2022; accepted February 22, 2023. 2020 Mathematics Subject Classification: 20D60, 20P05, 20D15.

Key words and phrases: Soluble group, Nilpotent subgroup, Probability.

^{*} Corresponding Author.

subgroup. In other words we have

$$\nu(G) = \frac{|\{(x,y) \in G \times G : \langle x,y \rangle \ is \ nilpotent\}|}{|G|^2}.$$

The notion $\nu(G)$ is introduced in [11] on the model of the commutativity degree,

$$cp(G) = \frac{|\{(x,y) \in G \times G : \langle x,y \rangle \ is \ abelian\}|}{|G|^2}.$$

Note that for $x,y\in G$, we have xy=yx if and only if $\langle x,y\rangle$ is abelian. It is easy to see that $cp(G)=\frac{\sum_{x\in G}|C_G(x)|}{|G|^2}$ where $C_G(x)$ is the centralizer of xin G as $C_G(x)$ is a subgroup of G for any $x \in G$.

Similarly if

$$Nil_G(x) = \{ y \in G | \langle x, y \rangle \text{ is nilpotent} \},$$

then

$$\nu(G) = \frac{\sum_{x \in G} |Nil_G(x)|}{|G|^2}.$$

However, $Nil_G(x)$ is not necessarily a subgroup of G, and so it is difficult to glean information about a group G from $\nu(G)$.

A finite group G is nilpotent if and only if $\nu(G) = 1$ (see Theorem 1 of [5]). On the other hand, Wilson [16] showed that in finite groups G the probability that two random elements of G produce a nilpotent group goes to 0 as the index of the Fitting subgroup of G goes to infinity.

Gustafson [8] proved that if G is a non-abelian group, then $cp(G) \leq \frac{5}{8}$, and that equality holds if and only if $\frac{G}{Z(G)}$ is isomorphic to the Kelian four-group $Z_2 \times$ Z_2 . Several authors determined the structure of a finite group G when cp(G) is sufficiently large, see [2, 9, 12].

In [7] Guralnick and Wilson found that if G is a nonnilpotent group, then $\nu(G) \leq \frac{1}{2}$. In this paper we classify groups G with $\nu(G) = \frac{1}{2}$ (see Proposition 2.6).

It is easy to see that $cp(A_5) = \nu(A_5) = \frac{1}{12}$ where A_5 is the alternating group of degree five. Dixon observed that $cp(G) \leq \frac{1}{12}$ for any finite nonabelian simple group G. This was submitted by Dixon as a problem in Canadian Math. Bulletin, 13 (1970), with his own solution appearing in 1973. Guralnick and Robinson [6] extended this result to nonsolvable groups and determined precisely for which nonsolvable groups the equality happens. Recently in [10] the authors of the present paper showed that if G is a group such that $Nil_G(x)$ is a subgroup of G for every

 $x \in G$ and $\nu(G) > \frac{1}{12}$, then G is solvable. Fulman et al. [5] proved that if G is a solvable nonnilpotent group and p is the smallest prime number that divides |G|, then $\nu(G) \leq \frac{1}{p}$ and equality holds if and only if p=2 and $\frac{G}{Z_{\infty}(G)}$ is isomorphic to the dihedral group of order 6 (see [5]). Here $Z_{\infty}(G)$ is the hypercenter of G (i.e. the terminal term of the upper central series of G, see [3, 13]). In this article we improve this upper bound as follows.

Theorem 1.1. Suppose that G is a solvable nonnilpotent group of even order. Then $\nu(G) \leq \frac{p+3}{4p}$ where p is the smallest odd prime number that divides |G|; equality holds if and only if $\frac{G}{Z_{\infty}(G(G))} \cong D_{2p}$ is the dihedral group of order 2p.

For a prime p we denote by \mathbb{Z}_p^k the elementary abelian group of order p^k . We propose the following conjecture for every nonnilpotent group of odd order.

Conjecture Let G be a finite solvable nonnilpotent group such that $|G| = p_1^{n_1} p_2^{n_2} \cdots p_r^{n_r}$ where $2 < p_1 < \cdots < p_r$ are primes. Then

$$\nu(G) \leq \frac{p_k^{t_k} + p_l^2 - 1}{p_k^{t_k} p_l^2} := \max\{\frac{p_i^{t_i} + p_j^2 - 1}{p_i^{t_i} p_j^2}: \quad p_j | p_i^{t_i} - 1, 1 \leq j < i \leq r, 1 \leq t_i \leq n_i\}$$

for some $1 \leq l < k \leq r$ and equality holds if and only if $\frac{G}{Z_{\infty}(G)} \cong Z_{p_k}^{t_k} \rtimes Z_{p_l}$. We

think that this conjecture is true for the class of \mathbb{N} -groups, introduced by Abdollahi and Zarrin in [1], which are the groups in which $Nil_G(x)$ is a nilpotent group for every $x \in G \setminus Z_{\infty}(G)$. We feel that the method used in proof of main theorem of [15] may be useful in proving this.

In Section 2 we compute $\nu(G)$ for Frobenius groups and Dihedral groups. We also prove that for any positive integer n, there is a group G such that $\nu(G) = \frac{1}{n}$. Finally we classify all groups G with $\nu(G) = \frac{1}{2}$. In Section 3 we verify Theorem 1.1 and, with Theorem 3.2, confirm the above conjecture for groups of square-free order.

In this article G is a finite group and $Z_{\infty}(G)$ is its hypercenter. Most notation we use is standard and follows [14].

2. Computing $\nu(G)$ for Certain Groups

The following lemmas are very useful in the sequel.

Lemma 2.1. Suppose that G is a group. Then $\nu(G) = \nu(\frac{G}{Z_{\infty}(G)})$.

Lemma 2.2. Suppose that G and H are finite groups. Then $\nu(G \times H) = \nu(G) \times \nu(H)$.

Proof. The proof is not complicated.

Proposition 2.3. If $G = H \ltimes K$ is a Frobenius group where the Frobenius kernel is K and the complement is H, then $\nu(G) = \frac{1}{|H|^2}(1 - \frac{1}{|K|}) + \frac{\nu(H)}{|K|}$.

Proof. By hypothesis, we have $C_G(h) \subseteq H$ for each $1 \neq h \in H$, $C_G(k) \subseteq K$ for each $1 \neq k \in K$ and $H \cap H^x = 1$ for each $x \in G \setminus H$. Now if $\langle h_1 k_1, h_2 k_2 \rangle$ is nilpotent such that $h_1, h_2 \in H$ and $k_1, k_2 \in K$, then $h_1 = h_2 = 1$ or $k_1 = k_2 = 1$. On the

other hand $\{K, (H^x - 1) | x \in K\}$ is a partition of G and since K is nilpotent, we are done.

Corollary 2.4. Suppose that G is the dihedral group of order $2^r n$ where r > 1 and n is odd. Then $\nu(G) = \frac{n+3}{4n}$.

Proof. Since $\frac{D_2r_n}{Z(D_2r_n)} \cong D_{2^{r-1}n}$ for r > 1, by Lemma 2.1 we conclude that $\nu(D_{2^rn}) = \nu(D_{2^{r-1}n}) = \cdots = \nu(D_{2n})$. Since n is odd, D_{2n} is a Frobenious group with the cyclic kernel of order n and so we are done by Proposition 2.3.

Corollary 2.5. For any integer n > 0, there is a group G of even order such that $\nu(G) = \frac{1}{n}$.

Proof. Our proof is by induction on n. If $n \in \{1,2,3\}$, then the result holds since $\nu(D_2) = 1$, $\nu(D_6) = \frac{1}{2}$ and $\nu(D_{18}) = \frac{1}{3}$. So assume that $n \geq 4$ and the that the result holds for all positive integers m < n. If n is even, then there is a group H where $\nu(H) = \frac{2}{n}$ by induction hypothesis and so $\nu(H \times D_6) = \frac{1}{n}$ by Lemma 2.2. Suppose that n is odd, then n = 4m + 1 or n = 4m + 3 for some positive integer m. It follows from Corollary 2.4 that $\nu(D_{2(4m+1)}) = \frac{m+1}{n}$ and $\nu(D_{2(12m+9)}) = \frac{m+1}{n}$. Since m+1 < n, we are done by induction hypothesis and Lemma 2.2. This completes the proof.

In the following we classify all groups G with $\nu(G) = \frac{1}{2}$.

Proposition 2.6. Suppose that G is a finite group (not necessarily solvable). Then $\nu(G) = \frac{1}{2}$ if and only if $\frac{G}{Z_{\infty}(G)} \cong D_6$, the dihedral group of order 6.

Proof. We get necessity by By Lemma 2.1. Conversely if $\nu(G) = \frac{1}{2}$, then the probability of solvability of G is equal or greater than $\frac{1}{2}$ and so G is solvable by [7]. By Theorem 5 of [5], we conclude that $\nu(G) \leq \frac{1}{2}$ and equality holds when $\frac{G}{Z_{\infty}(G)} \cong D_6$, as needed.

3. Upper Bound for $\nu(G)$

S. Franciosi and F. Giovanni defined and studied a JNN group as a group all of whose proper quotients are nilpotent (see [4] and [5], Definition 1). It should be noted that a finite group G is a JNN group if and only if $G = L \ltimes A$ where A is an elementary abelian p-group and L is a nilpotent group such that p dose not divide the order of G and the action of L on A is faithful and irreducible (See Theorem 4 of [5] and what follows it).

Proof of Theorem 1.1.

If p=3, then $\nu(G)=1-\nu_0(G)\leq \frac{1}{2}$ by Theorem 5 of [5] and equality holds if and only if $\frac{G}{Z_{\infty}(G)}\cong D_6$. So we assume that the smallest odd prime divisor of |G| is greater than 3. It is enough to prove the result for JNN groups. For if G is a counterexample of minimal order, then there is a nontrivial normal subgroup K of G such that $\frac{G}{K}$ is nonnilpotent (since G is solvable). Suppose that r is the

smallest odd prime that divides $|\frac{G}{K}|$. If $\frac{G}{K}$ is of even order, then $\nu(G) \leq \nu(\frac{G}{K}) \leq \frac{r+3}{4r} \leq \frac{p+3}{4p}$ because $r \geq p$. Also if $\frac{G}{K}$ is of odd order, then by Theorem 5 of [5], $\nu(G) \leq \nu(\frac{G}{K}) \leq \frac{1}{r} \leq \frac{1}{4} \leq \frac{p+3}{4p}$ which gives a contradiction. So let us assume that G is a JNN group. Then $G = L \ltimes A$ where $L \cong P_k \times P_{k-1} \times \cdots \times P_1$, P_i 's are the unique Sylow p_i -subgroups of L and A is an elementary abelian q-group. By setting $N = P_{k-1} \ltimes \cdots \ltimes (P_1 \ltimes A)$ we have $G = P_k \ltimes N$. We claim that if q = 2 and $1 \neq x_p \in P_k$, then $|C_G(x_p) \cap N| \leq |\frac{N}{4}|$.

Assume that $|A|=2^t$ $(t\geq 2)$ and $H=C_G(x_p)\cap A$. If $|H|=2^{t-1}$ and $a\in A\setminus H$, then $a^{x_p}=ah_1$ for some $h_1\in H$. Hence $a^{x_p^2}=a^{x_p}h_1=ah_1^2=a$ and so $b^{x_p^2}=b$ for all $b\in A$. But P_k acts faithfully on A which implies that $x_p^2=1$, obviously absurd. Hence $|H|\leq 2^{t-2}$. If $M:=P_{k-1}\times P_{k-2}\times \cdots \times P_1$, then $C_G(x_p)\cap N=M(C_G(x_p)\cap A)=MH$ and so $|C_G(x_p)\cap N|=|M||H|=\frac{|N|}{|A|}|H|\leq \frac{|N|}{4}$, as claimed.

Now we want to count the ordered pairs (x,y) in a fixed pair (a_1N,a_2N) for some $a_1,a_2 \in G$ where $\langle x,y \rangle$ is nilpotent. By page 14 of [5], the probability that a selected pair (x,y) from the coset pair (x_pN,y_pN) generates a nilpotent subgroup is not greater than $\frac{|C_G(x_p) \cap C_G(y_p) \cap N|}{|N|}$ and by our claim this probability is equal or less than $\frac{1}{4}$.

Now we continue by induction on the number k of prime divisors of |L|. Here our aim is showing that if the upper bound mentioned in the assertion is correct for N, it is correct for G too. As mentioned above if q=2, then there is nothing to prove. So assume that $q \neq 2$. Since the action of P_k on A is faithful, in a similar way it can be seen that $|C_G(x_p) \cap N| \leq \frac{|N|}{q}$. If $q \geq 5$, then this probability is equal or less than $\frac{1}{5} \leq \frac{1}{4} \leq \frac{p+3}{4p}$ and by the assumption on N, we conclude that $\nu(G) \leq \frac{p+3}{4p}$. Also it is not hard to see that if $k \geq 2$, then the equality does not hold, since in this case N is not an elementary group and as mentioned above above in both cases, whether q is equal to 2 or not, the probability is less than $\frac{1}{4} < \frac{p+3}{4p}$. So it is enough to prove it for the base step of the induction. Assume that $G = R \ltimes A$ where $A = (Z_q)^n$, R is a Sylow r-subgroup and $|R| = r^m$. Then we investigate two

Case 1: Assume that q=2. Then $\nu(G) \leq \frac{2^{2n}+(2^{2n}r^{2m}-2^{2n})\times \frac{1}{4}}{2^{2n}r^{2m}}$. So $\nu(G) \leq \frac{r^{2m}+3}{4r^{2m}} < \frac{r+3}{4r}$. As one can see, equality cannot hold in this case.

Case 2: Suppose that r=2. Then $\nu(G) \leq \frac{q^{2n}+(q^{2n}2^{2m}-q^{2n})\times \frac{1}{q}}{q^{2n}2^{2m}} = \frac{2^{2m}+q-1}{q2^{2m}}$ and since $q\neq 3$, we have $\frac{2^{2m}+q-1}{q2^{2m}} \leq \frac{q+3}{4q}$ and equality holds if and only if m=1 and hence $G\cong Z_2\ltimes (Z_q)^n$. Now we claim that n=1.

Let $1 \neq a \in A$ and $1 \neq x \in R$. If $a^x = a$, then $\langle a^r \rangle = \langle a \rangle$ and since the action of R on A is irreducible, we have $\langle a \rangle = A$. Henceforth $G \cong Z_2 \ltimes Z_q \cong D_{2q}$. Otherwise, it can be assumed that $C_G(R) \cap A = 1$, which results that $G \cong Z_2 \ltimes (Z_q)^n$ is a Frobenius group. It follows that $\nu(G) = \frac{q^n + 3}{4q^n}$ (see Proposition 2.1). This implies that the equality exists in our assertion if and only if n = 1 and $G \cong D_{2q}$, while G

is a JNN group.

Now if G is not a JNN group, so there is a normal subgroup N of G such that $\frac{G}{N}$ is a JNN because G is solvable. Let $\nu(G) = \frac{p+3}{4p}$ where p is the smallest odd prime that divides |G| and $\frac{G}{N}$ is of even order and p_s be the smallest odd prime that divides the order of $\frac{G}{N}$. Then $\frac{p+3}{4p} = \nu(G) \leq \nu(\frac{G}{N}) \leq \frac{p_s+3}{4p_s}$ which implies that $p = p_s$ and $\frac{G}{N} \cong D_{2p}$. Now by an argument similar to that on page 16 of [5] it can be proved that $\frac{G}{Z_{\infty}(G)} \cong D_{2p}$. Let $\frac{G}{N}$ be of odd order and $p_s > 3$ be its smallest prime divisor. Then $\frac{p+3}{4p} = \nu(G) \leq \nu(\frac{G}{N}) \leq \frac{1}{p_s}$, our final contradiction.

For an odd prime p, we denote by \mathfrak{G}_p the set of all solvable nonnilpotent groups G of even order such that p is the smallest odd prime that divides the order of G.

Corollary 3.1. Suppose that $G \in \mathfrak{G}_p$ where p is an odd prime. Then $\nu(G)$ is the largest value of ν on \mathfrak{G}_p if and only if $\frac{G}{Z_{\infty}(G)} \cong D_{2p}$.

Theorem 3.2. Suppose that G is a finite group of odd order and $|G| = p_1 p_2 \cdots p_r$ where $p_1 < \cdots < p_r$ are primes. Then we have

$$\nu(G) \le \frac{p_k + p_l^2 - 1}{p_k p_l^2} := \max\{\frac{p_i + p_j^2 - 1}{p_i p_i^2}: p_j | p_i - 1, 1 \le j < i \le r\}$$

for some $1 \leq l < k \leq r$ and the equality holds if and only if $\frac{G}{Z_{\infty}(G)} \cong Z_{p_k} \rtimes Z_{p_l}$.

Proof. Similar to the proof of Theorem 1.1 we prove it for JNN groups. Let $G=L\ltimes A$ be a JNN group and let $p_1< p_2< \cdots < p_r$. Then $A\cong Z_{p_r}$ and $p_1p_2\cdots p_{r-1}|p_r-1$ since L acts faithfully on A. We proceed by induction as it was done in the Theorem 1.1. Thus set $N\leq G$ such that $|N|=p_2p_3\cdots p_r$. It follows that $G=P_1\ltimes N$. We claim that if the assertion is correct for N it will be correct for G too. It is not hard to see that the probability that a pair selected from the coset pair (x_pN,y_pN) for some $x_p,y_p\in P_1$ generates a nilpotent subgroup of G is bounded by $\frac{|C_G(x_p)\cap C_G(y_p)\cap N|}{|N|}$. But the action of P_1 on A is faithful and then if both x_p and y_p are not identity, then $\frac{|C_G(x_p)\cap C_G(y_p)\cap N|}{|N|}\leq \frac{1}{p_r}$. Now since $\frac{1}{p_r}< max\{\frac{p_i+p_j^2-1}{p_ip_j^2}|p_j|p_i-1,1\leq i,j\leq r\}$, one can conclude that the bound is right and the equality does not hold when $r\geq 3$. Coming back to the base of induction, let $|G|=p_1p_2$ with $p_1< p_2$. Then $G=Z_{p_1}\ltimes Z_{p_2}$ and $\nu(G)=\frac{p_2+p_1^2-1}{p_2p_1^2}$, as wanted. \square

References

[1] A. Abdollahi and M. Zarrin, *Non-nilpoten graph of a group*, Comm. Algebra, **38(12)**(2010), 4390–4403.

- [2] F. Barry, D. MacHale and A. N She, Some supersolvability conditions for finite groups, Math. Proc. Royal Irish Acad., 106A(2)(2006), 163-177.
- [3] S. Dixmier, Exposants des quotients des suites centrales descendantes et ascendantes d'un groupe, C. R. Acad. Sci. Paris, 259(1964), 2751–2753.
- [4] S. Franciosi and F. Giovanni, Soluble groups with many nilpotent quotients, Proc. Royal Irish Acad. Sect. A., 89(1989), 43–52.
- [5] J. E. Fulman, M. D. Galloy, G. J. Sherman and J. M. Vanderkam, *Counting nilpotent pairs in finite groups*, Ars Combin., **54**(2000), 161–178.
- [6] R. M. Guralnick and G. R. Robinson, On the commuting probability in finite groups,
 J. Algebra, 300(2)(2006), 509–528.
- [7] R. M. Guralnick and J. S. Wilson, The probability of generating a finite soluble group, Proc. London Math. Soc., 81(3)(2000), 405–427.
- [8] W. H. Gustafson, What is the probability that two group elements commute?, Amer. Math. Monthly, 80(9)(1973), 1031–1034.
- [9] R. Heffernan, D. MacHale and A. N She, Restrictions on commutativity ratios in finite groups, Int. J. Group Theory, **3(4)**(2014), 1–12.
- [10] S. M. Jafarian Amiri, H. Madadi and H. Rostami, On the probability of generating nilpotent subgroups in a finite group, Bull. Aust. Math. Soc., 93(3)(2016), 447–453.
- [11] E. Khamseh, M. R. R. Moghaddam and F. G. Russo, Some Restrictions on the Probability of Generating Nilpotent Subgroups, Southeast Asian Bull. Math., 37(4)(2013), 537–545.
- [12] P. Lescot, H. N. Nguyen and Y. Yang, On the commuting probability and supersolvability of finite groups, Monatsh. Math., 174(2014), 567–576.
- [13] D. H. McLain, Remarks on the upper central series of a group, Proc. Glasgow Math. Assoc., 3(1956), 38–44.
- [14] D. J. S. Robinson, A course in the theory of groups, Springer-Verlag New York(1996).
- [15] H. Rostami, The Commutativity Degree in the Class of Nonabelian Groups of Same Order, Kyungpook Math. J., 59(2019), 203–207.
- [16] J. Wilson, The probability of generating a nilpotent subgroup of a finite group, Bull. London Math. Soc., 40(2008), 568-580.