DOI QR코드

DOI QR Code

Impact of porosity distribution on static behavior of functionally graded plates using a simple quasi-3D HSDT

  • Farouk Yahia Addou (Civil Engineering Department, Faculty of Science and Technology, University of Mostaganem) ;
  • Fouad Bourada (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Mustapha Meradjah (Laboratoire de Modelisation et Simulation Multi-echelle, Universite de Sidi Bel Abbes) ;
  • Abdelmoumen Anis Bousahla (Laboratoire de Modelisation et Simulation Multi-echelle, Universite de Sidi Bel Abbes) ;
  • Abdelouahed Tounsi (Material and Hydrology Laboratory, Faculty of Technology, Civil Engineering Department, University of Sidi Bel Abbes) ;
  • Mofareh Hassan Ghazwani (Department of Mechanical Engineering, Faculty of Engineering, Jazan University) ;
  • Ali Alnujaie (Department of Mechanical Engineering, Faculty of Engineering, Jazan University)
  • Received : 2023.01.01
  • Accepted : 2023.04.05
  • Published : 2023.07.25

Abstract

The bending of a porous FG plate is discussed in this study using a novel higher quasi-3D hyperbolic shear deformation theory with four unknowns. The proposed theory takes into consideration the normal and transverse shear deformation effect and ensures the parabolic distribution of the transverse stresses through the thickness direction with zero-traction at the top and the bottom surfaces of the structure. Innovative porous functionally graded materials (FGM) have through-thickness porosity as a unique attribute that gradually varies with their qualities. An analytical solution of the static response of the perfect and imperfect FG plate was derived based on the virtual work principle and solved using Navier's procedure. The validity and the efficiency of the current model is confirmed by comparing the results with those obtained by others solutions. The comparisons showed that the present model is very efficient and simple in terms of computation time and exactness. The impact of the porosity parameter, aspect ratio, and thickness ratio on the bending of porous FG plate is shown through a discussion of several numerical results.

Keywords

References

  1. Akbas, S.D. (2018), "Forced vibration analysis of functionally graded porous deep beams", Compos. Struct., 186, 293-302. https://doi.org/10.1016/j.compstruct.2017.12.013.
  2. Alizadeh, M. and Fattahi, A.M. (2019), "Non-classical plate model for FGMs", Eng. Comput., 35(1), 215-228. https://doi.org/10.1007/s00366-018-0594-6.
  3. AlSaid-Alwan, H.H.S. and Avcar, M. (2020), "Analytical solution of free vibration of FG beam utilizing different types of beam theories: A comparative study", Comput. Concrete, 26(3), 285-292. http://doi.org/10.12989/cac.2020.26.3.285.
  4. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
  5. Beena, K.P. and Parvathy, U. (2014), "Linear static analysis of functionally graded plate using spline finite strip method", Compos. Struct., 117, 309-315. https://doi.org/10.1016/j.compstruct.2014.07.002.
  6. Carrera, E., Brischetto, S., Cinefra, M. and Soave, M. (2011), "Effects of thickness stretching in functionally graded plates and shells", Compos. Part B: Eng., 42(2), 123-133. https://doi.org/10.1016/j.compositesb.2010.10.005.
  7. Chakraverty, S. and Pradhan, K.K. (2014), "Free vibration of functionally graded thin rectangular plates resting on winkler elastic foundation with general boundary conditions using Rayleigh-Ritz method", Int. J. Appl. Mech., 6(4), 14500434. https://doi.org/10.1142/S1758825114500434.
  8. Chen, D., Yang, J. and Kitipornchai, S. (2019), "Buckling and bending analyses of a novel functionally graded porous plate using Chebyshev-Ritz method", Arch. Civil Mech. Eng., 19(1), 157-170. https://doi.org/10.1016/j.acme.2018.09.004.
  9. Ding, H.X., Zhang, Y.W. and She, G.L. (2022), "On the resonance problems in FG-GPLRC beams with different boundary conditions resting on elastic foundations", Comput. Concrete, 30(6), 433-443. https://doi.org/10.12989/cac.2022.30.6.433.
  10. Ebrahimi, F. and Dashti, S. (2015), "Free vibration analysis of a rotating non-uniform functionally graded beam", Steel Compos. Struct., 19(5), 1279-1298. https://doi.org/10.12989/scs.2015.19.5.1279.
  11. Ebrahimi, F. and Habibi, S. (2016), "Deflection and vibration analysis of higher-order shear deformable compositionally graded porous plate", Steel Compos. Struct., 20(1), 205-225. https://doi.org/10.12989/scs.2016.20.1.205.
  12. Ebrahimi, F. and Rastgo, A. (2008), "An analytical study on the free vibration of smart circular thin FGM plate based on classical plate theory", Thin Wall. Struct., 46(12), 1402-1408. https://doi.org/10.1016/j.tws.2008.03.008.
  13. Eltaher, M.A., Fouda, N., El-midany, T. and Sadoun, A.M. (2018), "Modified porosity model in analysis of functionally graded porous nanobeams", J. Braz. Soc. Mech. Sci. Eng., 40(3), 1-10. https://doi.org/10.1007/s40430-018-1065-0.
  14. Faleh, N.M., Ahmed, R.A. and Fenjan, R.M. (2018), "On vibrations of porous FG nanoshells", Int. J. Eng. Sci., 133, 1-14. https://doi.org/10.1016/j.ijengsci.2018.08.007.
  15. Fattahi, A.M., Sahmani, S. and Ahmed, N.A. (2019), "Nonlocal strain gradient beam model for nonlinear secondary resonance analysis of functionally graded porous micro/nanobeams under periodic hard excitations", Mech. Based Des. Struct. Mach., 48(4), 403-432. https://doi.org/10.1080/15397734.2019.1624176.
  16. Hamed, M.A., Sadoun, A.M. and Eltaher, M.A. (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71(1), 89-98. https://doi.org/10.12989/sem.2019.71.1.089.
  17. Hosseini-Hashemi, S., Fadaee, M. and Atashipour, S.R. (2011), "A new exact analytical approach for free vibration of ReissnerMindlin functionally graded rectangular plates", Int. J. Mech. Sci., 53(1), 11-22. https://doi.org/10.1016/j.ijmecsci.2010.10.002.
  18. Kar, V.R. and Panda, S.K., (2015), "Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel", Steel Compos. Struct., 18(3), 693-709. https://doi.org/10.12989/scs.2015.18.3.693.
  19. Khazaei, P. and Mohammadimehr, M. (2020), "Vibration analysis of porous nanocomposite viscoelastic plate reinforced by FG-SWCNTs based on a nonlocal strain gradient theory", Comput. Concrete, 26(1), 31-52. https://doi.org/10.12989/cac.2020.26.1.031.
  20. Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427.
  21. Madenci, E. (2021), "Free vibration analysis of carbon nanotube RC nanobeams with variational approaches", Adv. Nano Res., 11(2), 157-171. https://doi.org/10.12989/anr.2021.11.2.157.
  22. Madenci, E. (2021), "Free vibration and static analyses of metal-ceramic FG beams via high-order variational MFEM", Steel Compos. Struct., 39(5), 493-509. https://doi.org/10.12989/scs.2021.39.5.493.
  23. Madenci, E. and Ozkili, Y.O. (2021), "Free vibration analysis of open-cell FG porous beams: Analytical, numerical and ANN approaches", Steel Compos. Struct., 40(2), 157-173. https://doi.org/10.12989/scs.2021.40.2.157.
  24. Madenci, E. and Ozutok, A. (2021), "Variational approximate for high order bending analysis of laminated composite plates", Struct. Eng. Mech., 73(1), 97-108. https://doi.org/10.12989/sem.2020.73.1.097.
  25. Mantari, J.L. and Guedes Soares, C. (2012), "Generalized hybrid quasi-3D shear deformation theory for the static analysis of advanced composite plates", Compos. Struct., 94(8), 2561-2575. https://doi.org/10.1016/j.compstruct.2012.02.019.
  26. Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R.M.N. and Soares, C.M.M. (2012), "A quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", Compos. Struct., 94(5), 1814-1825. https://doi.org/10.1016/j.compstruct.2011.12.005.
  27. Oner, E., Sengul Sabano, B., Uzun Yaylaci, E., Adiyaman, G., Yaylaci, M. and Birinci, A. (2022), "On the plane receding contact between two functionally graded layers using computational, finite element and artificial neural network methods", ZAMM - J. Appl. Math. Mech., 102(2), e202100287. https://doi.org/10.1002/zamm.202100287.
  28. Ozdemir, M.E. and Yaylaci, M. (2023), "Research of the impact of material and flow properties on fluid-structure interaction in cage systems", Wind Struct., 36(1), 31-40. https://doi.org/10.12989/was.2023.36.1.031.
  29. Quan, T.Q. and Dinh Duc, N. (2017), "Nonlinear thermal stability of eccentrically stiffened FGM double curved shallow shells", J. Therm. Stress., 40(2), 211-236. https://doi.org/10.1080/01495739.2016.1225532.
  30. Rouzegar, J. and Abad, F. (2015), "Free vibration analysis of FG plate with piezoelectric layers using four-variable refined plate theory", Thin Wall. Struct., 89, 76-83. https://doi.org/10.1016/j.tws.2014.12.010.
  31. Thai, H.T., Vo, T.P., Bui, T.Q. and Nguyen, T.K. (2014), "A quasi-3D hyperbolic shear deformation theory for functionally graded plates", Acta Mech., 225(3), 951-964. https://doi.org/10.1007/s00707-013-0994-z.
  32. Thai, H.T., Nguyen, T.K., Vo, T.P. and Lee, J. (2014), "Analysis of functionally graded sandwich plates using a new first-order shear deformation theory", Eur. J. Mech. A/Solid., 45, 211-225. https://doi.org/10.1016/j.euromechsol.2013.12.008.
  33. Timesli, A. (2020), "Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation", Comput. Concrete, 26(1), 53-62. https://doi.org/10.12989/cac.2020.26.1.053.
  34. Turan, M., Uzun Yaylaci, E. and Yaylaci, M. (2023), "Free vibration and buckling of functionally graded porous beams using analytical, finite element, and artificial neural network methods", Arch. Appl. Mech., 93, 1351-1372. https://doi.org/10.1007/s00419-022-02332-w.
  35. Vu, T.V., Curiel-Sosa, J.L. and Bui, T.Q. (2019), "A refined sin hyperbolic shear deformation theory for sandwich FG plates by enhanced meshfree with new correlation function", Int. J. Mech. Mater. Des., 15(3), 647-669. https://doi.org/10.1007/s10999-018-9430-9.
  36. Xiang, S. and Kang, G. (2013), "A nth-order shear deformation theory for the bending analysis on the functionally graded plates", Eur. J. Mech. A/Solid., 37, 336-343. https://doi.org/10.1016/j.euromechsol.2012.08.005.
  37. Yaylaci, E.U., Oner, E., Yaylaci, M., Ozdemir, M.E., Abushattal, A. and Birinci, A. (2022d), "Application of artificial neural networks in the analysis of the continuous contact problem", Struct. Eng. Mech., 84(1), 35-48. https://doi.org/10.12989/sem.2022.84.1.035.
  38. Yaylaci, E.U., Yaylaci, M., Olmez, H. and Birinci, A. (2020), "Artificial neural network calculations for a receding contact problem", Comput. Concrete, 25(6), 551-563. https://doi.org/10.12989/cac.2020.25.6.551.
  39. Yaylaci, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156. https://doi.org10.12989/sem.2016.57.6.1143.
  40. Yaylaci, M. (2022), "Simulate of edge and an internal crack problem and estimation of stress intensity factor through finite element method", Adv. Nano Res., 12(4), 405-414. https://doi.org/10.12989/anr.2022.12.4.405.
  41. Yaylaci, M., Yaylaci, E.U., Ozdemir, M.E., Ozturk, S. and Sesli, H. (2023), "Vibration and buckling analyses of FGM beam with edge crack: Finite element and multilayer perceptron methods", Steel Compos. Struct., 46(4), 565-575. https://doi.org/10.12989/scs.2023.46.4.565.
  42. Yaylaci, M., Abanoz, M., Yaylaci, E.U., Olmez, H., Sekban, D.M. and Birinci, A. (2022c), "The contact problem of the functionally graded layer resting on rigid foundation pressed via rigid punch", Steel Compos. Struct., 43(5), 661-672. https://doi.org/10.12989/scs.2022.43.5.661.
  43. Yaylaci, M., Abanoz, M., Yaylaci, E.U., Olmez, H., Sekban, D.M. and Birinci, A. (2022b), "Evaluation of the contact problem of functionally graded layer resting on rigid foundation pressed via rigid punch by analytical and numerical (FEM and MLP) methods", Arch. Appl. Mech., 92(6), 1953-1971. https://doi.org/10.1007/s00419-022-02159-5.
  44. Yaylaci, M., Adiyaman, G., Oner, E. and Birinci, A. (2021a), "Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM", Comput. Concrete, 27(3), 199-210. https://doi.org/10.12989/cac.2021.27.3.199.
  45. Yaylaci, M., Sabano, B.S., Ozdemir, M.E. and Birinci, A. (2022a), "Solving the contact problem of functionally graded layers resting on a HP and pressed with a uniformly distributed load by analytical and numerical methods", Struct. Eng. Mech., 82(3), 401-416. https://doi.org/10.12989/sem.2022.82.3.401.
  46. Yaylaci, M., Yayli, M., Yaylaci, E.U., Olmez, H. and Birinci, A. (2021b), "Analyzing the contact problem of a functionally graded layer resting on an elastic half plane with theory of elasticity, finite element method and multilayer perceptron", Struct. Eng. Mech., 78(5), 585-597. https://doi.org/10.12989/sem.2021.78.5.585.
  47. Zenkour, A.M. (2006), "Generalized shear deformation theory for bending analysis of functionally graded plates", Appl. Math. Modell., 30(1), 67-84. https://doi.org/10.1016/j.apm.2005.03.009.
  48. Zenkour, A.M. (2013), "A simple four-unknown refined theory for bending analysis of functionally graded plates", Appl. Math. Modell., 37(20-21), 9041-9051. https://doi.org/10.1016/j.apm.2013.04.022.
  49. Zenkour, A.M. and Alghanmi, R.A. (2018), "Bending of functionally graded plates via a refined quasi-3D shear and normal deformation theory", Curv. Layer. Struct., 5(1), 190-200. https://doi.org/10.1515/cls-2018-0014.