참고문헌
- Abdelrahman, A.A. and Rizkalla, S.H. (1997), "Serviceability of concrete beams prestressed by carbon", ACI Struct. J., 94(4), 447-454. https://doi.org/10.14359/496.
- AlHamaydeh, M., Markou, G., Bakas, N. and Papadrakakis, M.A. (2022), "AI-based shear capacity of FRP-reinforced concrete deep beams without stirrups", Eng. Struct., 264(1), 1-39. https://doi.org/10.1016/j.engstruct.2022.114441.
- Alshimmeri, A.J.H., Kontoni, D.P.N. and Ghamari, A. (2021), "Improving the seismic performance of reinforced concrete frames using an innovative metallic-shear damper", Comput. Concrete, 28(3), 275-287. https://doi.org/10.12989/cac.2021.28.3.275.
- Atutis, M. and Kawashima, S. (2020), "Analysis of flexural concrete beams prestressed with basalt composite bars. Analytical-experimental approach", Compos. Struct., 243, 112172. https://doi.org/10.1016/j.compstruct.2020.112172.
- Barkhordari, M.S., Armaghani, D.J. and Fakharian, P. (2022), "Ensemble machine learning models for prediction of flyrock due to quarry blasting", Int. J. Environ. Sci. Technol., 19(9), 1-16. https://doi.org/10.1007/s13762-022-04096-w.
- Bashir, R. and Ashour, A. (2012), "Neural network modelling for shear strength of concrete members reinforced with FRP bars", Compos. Part B Eng., 43(8), 3198-3207. https://doi.org/10.1016/j.compositesb.2012.04.011.
- Burke, C.R. and Dolan, C.W. (2001), "Flexural design of prestressed concrete beams using FRP tendons", PCI J., 46(2), 76-87. https://doi.org/10.15554/pcij.03012001.76.87.
- Chen, L., Armaghani, D.J., Fakharuab, P., Bhatawdekar, R.M., Samui, P., Khandelwal, M. and Khedher, K.M. (2022), "A study on environmental issues of blasting using advanced support vector machine algorithms", Int. J. Environ. Sci. Technol., 19(7), 1-20. https://doi.org/10.1007/s13762-022-03999-y.
- Chi, Z., Weimin, X., Tirpak, T.M. and Nelson, P.C. (2003), "Evolving accurate and compact classification rules with gene expression programming", IEEE Trans. Evol. Comput., 7(6), 519-531. https://doi.org/10.1109/TEVC.2003.819261.
- Coelho, M.R.F., Sena-Cruz, J.M., Neves, L.A.C., Pereira, M., Cortez, P. and Miranda, T. (2016), "Using data mining algorithms to predict the bond strength of NSM FRP systems in concrete", Constr. Build. Mater., 126, 484-495. https://doi.org/10.1016/j.conbuildmat.2016.09.048.
- Dolan, C.W. and Swanson, D. (2002), "Development of flexural capacity of a FRP prestressed beam with vertically distributed tendons", Compos. Part B Eng., 33(1), 1-6. https://doi.org/10.1016/S1359-8368(01)00053-1.
- Ebadi-Jamkhaneh, M., Homaioon-Ebrahimi, A. and Kontoni, D.P.N. (2021), "Numerical finite element study of strengthening of damaged reinforced concrete members with carbon and glass FRP wraps", Comput. Concrete, 28(2), 137-147. https://doi.org/10.12989/cac.2021.28.2.137.
- Eleyedath, A. and Swamy, A.K. (2020), "Prediction of dynamic modulus of asphalt concrete using hybrid machine learning technique", Int. J. Pavement Eng., 23(6), 1-16. https://doi.org/10.1080/10298436.2020.1841191.
- Fam, A.Z., Rizkalla, S.H. and Tadros, G. (1997), "Behavior of CFRP for prestressing and shear reinforcements of concrete highway bridges", ACI Struct. J., 94(1), 77-86. https://doi.org/10.14359/463.
- Fakharian, P., Eidgahee, D.R., Akbari, M., Jahangir, H. and Taeb, A.A. (2023), "Compressive strength prediction of hollow concrete masonry blocks using artificial intelligence algorithms", Struct., 47(1), 1790-1802. https://doi.org/10.1016/j.istruc.2022.12.007.
- Farhangi, V., Jahangir, H., Eidgahee, D.R., Karimipour, A., Javan, S.A.N., Hasani, H., Fasihihour, N. and Karakouzian, M. (2021), "Behaviour investigation of SMA-equipped bar hysteretic dampers using machine learning techniques", Appl. Sci., 11(21), 10057. https://doi.org/10.3390/app112110057.
- Forouzannia, F., Gencturk, B., Dawood, M. and Belarbi, A. (2016), "Calibration of flexural resistance factors for load and resistance factor design of concrete bridge girders prestressed with carbon fiber-reinforced polymers", J. Compos. Constr., 20(2), 04015050. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000613.
- Gandomi, A.H., Alavi, A.H., Mirzahosseini, M.R. and Nejad, F.M. (2011), "Nonlinear genetic-based models for prediction of flow number of asphalt mixtures", J. Mater. Civil Eng., 23(3), 248-263. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000154.
- Grace, N., Enomoto, T., Baah, P. and Bebawy, M. (2012), "Flexural behavior of CFRP precast prestressed decked bulb T - beams", J. Compos. Constr., 16(3), 225-234. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000266.
- Grace, N., Ushijima, K., Matsagar, V. and Wu, C. (2013), "Performance of AASHTO-type bridge model prestressed with carbon fiber-reinforced polymer reinforcement", ACI Struct. J., 110(3), 491-501. https://doi.org/10.14359/51685606.
- Grace, N.F. and Singh, S.B. (2003), "Design approach for carbon fiber-reinforced polymer prestressed concrete bridge beams", ACI Struct. J., 100(3), 365-376. https://doi.org/10.14359/12612.
- Gravett, D.Z., Mourlas, C., Taljaard, V.L., Bakas, N., Markou, G. and Papadrakakis, M. (2021), "New fundamental period formulae for soil-reinforced concrete structures interaction using machine learning algorithms and ANNs", Soil Dyn. Earthq. Eng., 144(1), 1-37. https://doi.org/10.1016/j.soildyn.2021.106656.
- Jahangir, H., Bagheri, M. and Delavari, S.M.J. (2021), "Cyclic behavior assessment of steel bar hysteretic dampers using multiple nonlinear regression approach", Iran. J. Sci. Technol. Trans. Civil Eng., 45(2), 1227-1251. https://doi.org/10.1007/s40996-020-00497-4.
- Jahangir, H. and Esfahani, M.R. (2020a), "Investigating loading rate and fibre densities influence on SRG - concrete bond behaviour", Steel Compos. Struct., 34(6), 877-889. https://doi.org/10.12989/scs.2020.34.6.877.
- Jahangir, H. and Esfahani, M.R. (2020b), "Experimental analysis on tensile strengthening properties of steel and glass fiber reinforced inorganic matrix composites", Sci. Iran., 28(3), 1152-1166. https://doi.org/10.24200/SCI.2020.54787.3921.
- Jahangir, H. and Rezazadeh Eidgahee, D. (2021), "A new and robust hybrid artificial bee colony algorithm - ANN model for FRP-concrete bond strength evaluation", Compos. Struct., 257, 113160. https://doi.org/10.1016/j.compstruct.2020.113160.
- Jongvivatsakul, P., Laopaitoon, P., Nguyen, Y.T., Nguyen, P.T. and Bui, L.V. (2021), "Assessment of shear resistance of corroded beams repaired using SFRC in the tension zone", Comput. Concrete, 27(5), 395-406. https://doi.org/10.12989/cac.2021.27.5.395.
- Kakizawa, T., Ohno, S. and Yonezawa, T. (1993), "Flexural behavior and energy absorption of carbon FRP reinforced concrete beams", ACI Symp. Publ., 138, 585-598.
- Kim, Y.J. (2010), "Flexural response of concrete beams prestressed with AFRP tendons: Numerical investigation", J. Compos. Constr., 14(6), 647-658. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000128.
- Koroglu, M.A. (2019), "Artificial neural network for predicting the flexural bond strength of FRP bars in concrete", Sci. Eng. Compos. Mater., 26(1), 12-29. https://doi.org/10.1515/secm-2017-0155.
- Krem, S. (2013), "Bond and flexural behaviour of self consolidating concrete beams reinforced and prestressed with FRP bars", Ph.D. Dissertation, University of Waterloo, Waterloo, Canada.
- Lees, J.M. and Burgoyne, C.J. (1999), "Experimental study of influence of bond on flexural behavior of concrete beams pretensioned with aramid fiber reinforced plastics", ACI Struct. J., 96, 377-385. https://doi.org/10.14359/671.
- Liang, Y., Sun, C. and Ansari, F., (2011), "Damage assessment and ductility evaluation of post tensioned beams with hybrid FRP tendons", J. Compos. Constr., 15(3), 274-283. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000166.
- Liu, J., Yan, K., You, L., Liu, P. and Yan, K. (2017), "Prediction models of mixtures' dynamic modulus using gene expression programming", Int. J. Pavement Eng., 18(11), 971-980. https://doi.org/10.1080/10298436.2016.1138113.
- Mansour, W., Sakr, M., Seleemah, A., Tayeh, B.A. and Khalifa, T. (2021), "Development of shear capacity equations for RC beams strengthened with UHPFRC", Comput. Concrete, 27(5), 473-487. https://doi.org/10.12989/cac.2021.27.5.473.
- Markou, G. and Bakas, N.P. (2021), "Prediction of the shear capacity of reinforced concrete slender beams without stirrups by applying artificial intelligence algorithms in a big database of beams generated by 3D nonlinear finite element analysis", Comput. Concrete, 28(6), 433-447. https://doi.org/10.12989/cac.2021.28.6.533.
- McKay, K.S. and Erki, M.A. (1993), "Flexural behaviour of concrete beams pretensioned with aramid fibre reinforced plastic tendons", Can. J. Civil Eng., 20(4), 688-695. https://doi.org/10.1139/l93-085.
- Meng, L.X., Tao, X.K., Guan J.G. and Xu F.Q. (2006), "Experimental study on flexural behavior of partially prestressed concrete beams with bonded AFRP tendons", Chin. Civil Eng. J., 39(3), 10-18, 36.
- Mertol, H.C., Rizkalla, S., Scott, P., Lees, J.M. and El-Hacha, R. (2006), "Durability and fatigue behavior of high-strength concrete beams prestressed with CFRP bars", ACI Special Publication SP245-12451: Case Histories and Use of FRP for Prestressing Applications, ACI, Farmington Hills, MI, USA.
- Milne, L. (1995), "Feature selection using neural networks with contribution measures", AI-Conf., 1995, 517. https://doi.org/10.26190/unsworks/378.
- Mirsayapov, I., Antakov, I. and Antakov, A. (2020), "Improving methods of strength design of normal sections of flexural concrete members reinforced with fiber-reinforced polymer bars", IOP Conf. Ser. Mater. Sci. Eng., 890(1), 012057. https://doi.org/10.1088/1757-899X/890/1/012057.
- Mollahasani, A., Alavi, A.H. and Gandomi, A.H. (2011), "Empirical modeling of plate load test moduli of soil via gene expression programming", Comput. Geotech., 38(2), 281-286. https://doi.org/10.1016/j.compgeo.2010.11.008.
- Morais, M. and Burgoyne, C. (2003), "Experimental investigation of the ductility of beams prestressed with FRP", Fibre-Reinforced Polymer Reinforcement for Concrete Structures, 2, 1013-1022. https://doi.org/10.1142/9789812704863_0097.
- Nanni, A. and Tanigaki, M. (1992), "Pretensioned prestressed concrete members with bonded fiber reinforced plastic tendons: Development and flexural bond lengths (static)", Struct. J., 89(4), 433-441. https://doi.org/10.14359/9640.
- Narayana, H. and Janardhan, P. (2021), "PSO based neural network to predict torsional strength of FRP strengthened RC beams", Comput. Concrete, 28(6), 635-642. https://doi.org/10.12989/cac.2021.28.6.635.
- Noel, M. and Soudki, K. (2013), "Effect of prestressing on the performance of GFRP-reinforced concrete slab bridge strips", J. Compos. Constr., 17(2), 188-196. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000326.
- Park, S.Y. and Naaman, A.E. (1999), "Shear behavior of concrete beams prestressed with FRP tendons", PCI J., 44, 74-85. https://doi.org/10.15554/pcij.01011999.74.85.
- Peng, F. and Xue, W. (2018a), "Design approach for flexural capacity of concrete T-beams with bonded prestressed and nonprestressed FRP reinforcements", Compos. Struct., 204, 333-341. https://doi.org/10.1016/j.compstruct.2018.07.091.
- Peng, F. and Xue, W. (2018b), "Analytical approach for flexural capacity of FRP prestressed concrete T-beams with non-prestressed steel bars", J. Compos. Constr., 22(6), 04018063. https://doi.org/10.1061/(asce)cc.1943-5614.0000903.
- Pirayeh Gar, S., Mander, J.B. and Hurlebaus, S. (2018), "Deflection of FRP prestressed concrete beams", J. Compos. Constr., 22(2), 04017049. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000832.
- Pisani, M.A. (1998), "A numerical survey on the behaviour of beams pre-stressed with FRP cables", Constr. Build. Mater., 12(4), 221-232. https://doi.org/10.1016/S0950-0618(97)00081-0.
- Saafi, M. and Toutanji, H. (1998), "Flexural capacity of prestressed concrete beams reinforced with aramid fiber reinforced polymer (AFRP) rectangular tendons", Constr. Build. Mater., 12(5), 245-249. https://doi.org/10.1016/S0950-0618(98)00016-6.
- Sadat Hosseini, S.S. and Gandomi, A.H. (2012), "Short-term load forecasting of power systems by gene expression programming", Neural Comput. Appl., 21(2), 377-389. https://doi.org/10.1007/s00521-010-0444-y.
- Stoll, F.E., Saliba, J.E. and Casper, L. (2000), "Experimental study of CFRP-prestressed high-strength concrete bridge beams", Compos. Struct., 49(2), 191-200. https://doi.org/10.1016/S0263-8223(99)00134-8.
- Toutanji, H. and Saafi, M. (1999), "Performance of concrete beams prestressed with aramid fiber-reinforced polymer tendons", Compos. Struct., 44(1), 63-70. https://doi.org/10.1016/S0263-8223(98)00126-3.
- Xu, J., Zhu, P., Ma, Z.J. and Qu, W. (2019), "Fatigue flexural analysis of concrete beams reinforced with hybrid GFRP and steel bars", Eng. Struct., 199, 109635. https://doi.org/10.1016/j.engstruct.2019.109635.
- Xue, W.C. and X.H.W. (2007), "Experiment and nonlinear analysis of concrete beams with bonded prestressing CFRP tendons", Chin. J. Highw. Transp., 20(4), 41-59.
- Yonekura, A., Tazawa, E.I. and Nakayama, H. (1993), "Flexural and shear behavior of prestressed concrete beams using FRP rods as prestressing tendons", International Symposium on Fiber Reinforced Plastic Reinforcement for Concrete Structures (SP-138), Vancouver, BC, Canada, March.
- Zou, P.X.W (2005), Load-Deflection Response of High Strength Concrete Beams Pretensioned by Carbon Fibre Reinforced Polymers, Taylor & Francis, London, UK.