DOI QR코드

DOI QR Code

Flexural capacity estimation of FRP reinforced T-shaped concrete beams via soft computing techniques

  • Danial Rezazadeh Eidgahee (Department of Civil Engineering, Faculty of Engineering, Ferdowsi University of Mashhad ) ;
  • Atefeh Soleymani (Department of Civil Engineering, Shahid Bahonar University of Kerman) ;
  • Hamed Hasani (Department of Civil Engineering, University of Birjand) ;
  • Denise-Penelope N. Kontoni (Department of Civil Engineering, School of Engineering, University of the Peloponnese) ;
  • Hashem Jahangir (Department of Civil Engineering, University of Birjand)
  • 투고 : 2022.04.08
  • 심사 : 2023.03.02
  • 발행 : 2023.07.25

초록

This paper discusses a framework for predicting the flexural strength of prestressed and non-prestressed FRP reinforced T-shaped concrete beams using soft computing techniques. An analysis of 83 tests performed on T-beams of varying widths has been conducted for this purpose with different widths of compressive face, beam depth, compressive strength of concrete, area of prestressed and non-prestressed FRP bars, elasticity modulus of prestressed and non-prestressed FRP bars, and the ultimate tensile strength of prestressed and non-prestressed FRP bars. By analyzing the data using two soft computing techniques, named artificial neural networks (ANN) and gene expression programming (GEP), the fundamental parameters affecting the flexural performance of prestressed and non-prestressed FRP reinforced T-shaped beams were identified. The results showed that although the proposed ANN model outperformed the GEP model with higher values of R and lower error values, the closed-form equation of the GEP model can provide a simple way to predict the effect of input parameters on flexural strength as the output. The sensitivity analysis results revealed the most influential input parameters in ANN and GEP models are respectively the beam depth and elasticity modulus of FRP bars.

키워드

참고문헌

  1. Abdelrahman, A.A. and Rizkalla, S.H. (1997), "Serviceability of concrete beams prestressed by carbon", ACI Struct. J., 94(4), 447-454. https://doi.org/10.14359/496.
  2. AlHamaydeh, M., Markou, G., Bakas, N. and Papadrakakis, M.A. (2022), "AI-based shear capacity of FRP-reinforced concrete deep beams without stirrups", Eng. Struct., 264(1), 1-39. https://doi.org/10.1016/j.engstruct.2022.114441.
  3. Alshimmeri, A.J.H., Kontoni, D.P.N. and Ghamari, A. (2021), "Improving the seismic performance of reinforced concrete frames using an innovative metallic-shear damper", Comput. Concrete, 28(3), 275-287. https://doi.org/10.12989/cac.2021.28.3.275.
  4. Atutis, M. and Kawashima, S. (2020), "Analysis of flexural concrete beams prestressed with basalt composite bars. Analytical-experimental approach", Compos. Struct., 243, 112172. https://doi.org/10.1016/j.compstruct.2020.112172.
  5. Barkhordari, M.S., Armaghani, D.J. and Fakharian, P. (2022), "Ensemble machine learning models for prediction of flyrock due to quarry blasting", Int. J. Environ. Sci. Technol., 19(9), 1-16. https://doi.org/10.1007/s13762-022-04096-w.
  6. Bashir, R. and Ashour, A. (2012), "Neural network modelling for shear strength of concrete members reinforced with FRP bars", Compos. Part B Eng., 43(8), 3198-3207. https://doi.org/10.1016/j.compositesb.2012.04.011.
  7. Burke, C.R. and Dolan, C.W. (2001), "Flexural design of prestressed concrete beams using FRP tendons", PCI J., 46(2), 76-87. https://doi.org/10.15554/pcij.03012001.76.87.
  8. Chen, L., Armaghani, D.J., Fakharuab, P., Bhatawdekar, R.M., Samui, P., Khandelwal, M. and Khedher, K.M. (2022), "A study on environmental issues of blasting using advanced support vector machine algorithms", Int. J. Environ. Sci. Technol., 19(7), 1-20. https://doi.org/10.1007/s13762-022-03999-y.
  9. Chi, Z., Weimin, X., Tirpak, T.M. and Nelson, P.C. (2003), "Evolving accurate and compact classification rules with gene expression programming", IEEE Trans. Evol. Comput., 7(6), 519-531. https://doi.org/10.1109/TEVC.2003.819261.
  10. Coelho, M.R.F., Sena-Cruz, J.M., Neves, L.A.C., Pereira, M., Cortez, P. and Miranda, T. (2016), "Using data mining algorithms to predict the bond strength of NSM FRP systems in concrete", Constr. Build. Mater., 126, 484-495. https://doi.org/10.1016/j.conbuildmat.2016.09.048.
  11. Dolan, C.W. and Swanson, D. (2002), "Development of flexural capacity of a FRP prestressed beam with vertically distributed tendons", Compos. Part B Eng., 33(1), 1-6. https://doi.org/10.1016/S1359-8368(01)00053-1.
  12. Ebadi-Jamkhaneh, M., Homaioon-Ebrahimi, A. and Kontoni, D.P.N. (2021), "Numerical finite element study of strengthening of damaged reinforced concrete members with carbon and glass FRP wraps", Comput. Concrete, 28(2), 137-147. https://doi.org/10.12989/cac.2021.28.2.137.
  13. Eleyedath, A. and Swamy, A.K. (2020), "Prediction of dynamic modulus of asphalt concrete using hybrid machine learning technique", Int. J. Pavement Eng., 23(6), 1-16. https://doi.org/10.1080/10298436.2020.1841191.
  14. Fam, A.Z., Rizkalla, S.H. and Tadros, G. (1997), "Behavior of CFRP for prestressing and shear reinforcements of concrete highway bridges", ACI Struct. J., 94(1), 77-86. https://doi.org/10.14359/463.
  15. Fakharian, P., Eidgahee, D.R., Akbari, M., Jahangir, H. and Taeb, A.A. (2023), "Compressive strength prediction of hollow concrete masonry blocks using artificial intelligence algorithms", Struct., 47(1), 1790-1802. https://doi.org/10.1016/j.istruc.2022.12.007.
  16. Farhangi, V., Jahangir, H., Eidgahee, D.R., Karimipour, A., Javan, S.A.N., Hasani, H., Fasihihour, N. and Karakouzian, M. (2021), "Behaviour investigation of SMA-equipped bar hysteretic dampers using machine learning techniques", Appl. Sci., 11(21), 10057. https://doi.org/10.3390/app112110057.
  17. Forouzannia, F., Gencturk, B., Dawood, M. and Belarbi, A. (2016), "Calibration of flexural resistance factors for load and resistance factor design of concrete bridge girders prestressed with carbon fiber-reinforced polymers", J. Compos. Constr., 20(2), 04015050. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000613.
  18. Gandomi, A.H., Alavi, A.H., Mirzahosseini, M.R. and Nejad, F.M. (2011), "Nonlinear genetic-based models for prediction of flow number of asphalt mixtures", J. Mater. Civil Eng., 23(3), 248-263. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000154.
  19. Grace, N., Enomoto, T., Baah, P. and Bebawy, M. (2012), "Flexural behavior of CFRP precast prestressed decked bulb T - beams", J. Compos. Constr., 16(3), 225-234. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000266.
  20. Grace, N., Ushijima, K., Matsagar, V. and Wu, C. (2013), "Performance of AASHTO-type bridge model prestressed with carbon fiber-reinforced polymer reinforcement", ACI Struct. J., 110(3), 491-501. https://doi.org/10.14359/51685606.
  21. Grace, N.F. and Singh, S.B. (2003), "Design approach for carbon fiber-reinforced polymer prestressed concrete bridge beams", ACI Struct. J., 100(3), 365-376. https://doi.org/10.14359/12612.
  22. Gravett, D.Z., Mourlas, C., Taljaard, V.L., Bakas, N., Markou, G. and Papadrakakis, M. (2021), "New fundamental period formulae for soil-reinforced concrete structures interaction using machine learning algorithms and ANNs", Soil Dyn. Earthq. Eng., 144(1), 1-37. https://doi.org/10.1016/j.soildyn.2021.106656.
  23. Jahangir, H., Bagheri, M. and Delavari, S.M.J. (2021), "Cyclic behavior assessment of steel bar hysteretic dampers using multiple nonlinear regression approach", Iran. J. Sci. Technol. Trans. Civil Eng., 45(2), 1227-1251. https://doi.org/10.1007/s40996-020-00497-4.
  24. Jahangir, H. and Esfahani, M.R. (2020a), "Investigating loading rate and fibre densities influence on SRG - concrete bond behaviour", Steel Compos. Struct., 34(6), 877-889. https://doi.org/10.12989/scs.2020.34.6.877.
  25. Jahangir, H. and Esfahani, M.R. (2020b), "Experimental analysis on tensile strengthening properties of steel and glass fiber reinforced inorganic matrix composites", Sci. Iran., 28(3), 1152-1166. https://doi.org/10.24200/SCI.2020.54787.3921.
  26. Jahangir, H. and Rezazadeh Eidgahee, D. (2021), "A new and robust hybrid artificial bee colony algorithm - ANN model for FRP-concrete bond strength evaluation", Compos. Struct., 257, 113160. https://doi.org/10.1016/j.compstruct.2020.113160.
  27. Jongvivatsakul, P., Laopaitoon, P., Nguyen, Y.T., Nguyen, P.T. and Bui, L.V. (2021), "Assessment of shear resistance of corroded beams repaired using SFRC in the tension zone", Comput. Concrete, 27(5), 395-406. https://doi.org/10.12989/cac.2021.27.5.395.
  28. Kakizawa, T., Ohno, S. and Yonezawa, T. (1993), "Flexural behavior and energy absorption of carbon FRP reinforced concrete beams", ACI Symp. Publ., 138, 585-598.
  29. Kim, Y.J. (2010), "Flexural response of concrete beams prestressed with AFRP tendons: Numerical investigation", J. Compos. Constr., 14(6), 647-658. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000128.
  30. Koroglu, M.A. (2019), "Artificial neural network for predicting the flexural bond strength of FRP bars in concrete", Sci. Eng. Compos. Mater., 26(1), 12-29. https://doi.org/10.1515/secm-2017-0155.
  31. Krem, S. (2013), "Bond and flexural behaviour of self consolidating concrete beams reinforced and prestressed with FRP bars", Ph.D. Dissertation, University of Waterloo, Waterloo, Canada.
  32. Lees, J.M. and Burgoyne, C.J. (1999), "Experimental study of influence of bond on flexural behavior of concrete beams pretensioned with aramid fiber reinforced plastics", ACI Struct. J., 96, 377-385. https://doi.org/10.14359/671.
  33. Liang, Y., Sun, C. and Ansari, F., (2011), "Damage assessment and ductility evaluation of post tensioned beams with hybrid FRP tendons", J. Compos. Constr., 15(3), 274-283. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000166.
  34. Liu, J., Yan, K., You, L., Liu, P. and Yan, K. (2017), "Prediction models of mixtures' dynamic modulus using gene expression programming", Int. J. Pavement Eng., 18(11), 971-980. https://doi.org/10.1080/10298436.2016.1138113.
  35. Mansour, W., Sakr, M., Seleemah, A., Tayeh, B.A. and Khalifa, T. (2021), "Development of shear capacity equations for RC beams strengthened with UHPFRC", Comput. Concrete, 27(5), 473-487. https://doi.org/10.12989/cac.2021.27.5.473.
  36. Markou, G. and Bakas, N.P. (2021), "Prediction of the shear capacity of reinforced concrete slender beams without stirrups by applying artificial intelligence algorithms in a big database of beams generated by 3D nonlinear finite element analysis", Comput. Concrete, 28(6), 433-447. https://doi.org/10.12989/cac.2021.28.6.533.
  37. McKay, K.S. and Erki, M.A. (1993), "Flexural behaviour of concrete beams pretensioned with aramid fibre reinforced plastic tendons", Can. J. Civil Eng., 20(4), 688-695. https://doi.org/10.1139/l93-085.
  38. Meng, L.X., Tao, X.K., Guan J.G. and Xu F.Q. (2006), "Experimental study on flexural behavior of partially prestressed concrete beams with bonded AFRP tendons", Chin. Civil Eng. J., 39(3), 10-18, 36.
  39. Mertol, H.C., Rizkalla, S., Scott, P., Lees, J.M. and El-Hacha, R. (2006), "Durability and fatigue behavior of high-strength concrete beams prestressed with CFRP bars", ACI Special Publication SP245-12451: Case Histories and Use of FRP for Prestressing Applications, ACI, Farmington Hills, MI, USA.
  40. Milne, L. (1995), "Feature selection using neural networks with contribution measures", AI-Conf., 1995, 517. https://doi.org/10.26190/unsworks/378.
  41. Mirsayapov, I., Antakov, I. and Antakov, A. (2020), "Improving methods of strength design of normal sections of flexural concrete members reinforced with fiber-reinforced polymer bars", IOP Conf. Ser. Mater. Sci. Eng., 890(1), 012057. https://doi.org/10.1088/1757-899X/890/1/012057.
  42. Mollahasani, A., Alavi, A.H. and Gandomi, A.H. (2011), "Empirical modeling of plate load test moduli of soil via gene expression programming", Comput. Geotech., 38(2), 281-286. https://doi.org/10.1016/j.compgeo.2010.11.008.
  43. Morais, M. and Burgoyne, C. (2003), "Experimental investigation of the ductility of beams prestressed with FRP", Fibre-Reinforced Polymer Reinforcement for Concrete Structures, 2, 1013-1022. https://doi.org/10.1142/9789812704863_0097.
  44. Nanni, A. and Tanigaki, M. (1992), "Pretensioned prestressed concrete members with bonded fiber reinforced plastic tendons: Development and flexural bond lengths (static)", Struct. J., 89(4), 433-441. https://doi.org/10.14359/9640.
  45. Narayana, H. and Janardhan, P. (2021), "PSO based neural network to predict torsional strength of FRP strengthened RC beams", Comput. Concrete, 28(6), 635-642. https://doi.org/10.12989/cac.2021.28.6.635.
  46. Noel, M. and Soudki, K. (2013), "Effect of prestressing on the performance of GFRP-reinforced concrete slab bridge strips", J. Compos. Constr., 17(2), 188-196. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000326.
  47. Park, S.Y. and Naaman, A.E. (1999), "Shear behavior of concrete beams prestressed with FRP tendons", PCI J., 44, 74-85. https://doi.org/10.15554/pcij.01011999.74.85.
  48. Peng, F. and Xue, W. (2018a), "Design approach for flexural capacity of concrete T-beams with bonded prestressed and nonprestressed FRP reinforcements", Compos. Struct., 204, 333-341. https://doi.org/10.1016/j.compstruct.2018.07.091.
  49. Peng, F. and Xue, W. (2018b), "Analytical approach for flexural capacity of FRP prestressed concrete T-beams with non-prestressed steel bars", J. Compos. Constr., 22(6), 04018063. https://doi.org/10.1061/(asce)cc.1943-5614.0000903.
  50. Pirayeh Gar, S., Mander, J.B. and Hurlebaus, S. (2018), "Deflection of FRP prestressed concrete beams", J. Compos. Constr., 22(2), 04017049. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000832.
  51. Pisani, M.A. (1998), "A numerical survey on the behaviour of beams pre-stressed with FRP cables", Constr. Build. Mater., 12(4), 221-232. https://doi.org/10.1016/S0950-0618(97)00081-0.
  52. Saafi, M. and Toutanji, H. (1998), "Flexural capacity of prestressed concrete beams reinforced with aramid fiber reinforced polymer (AFRP) rectangular tendons", Constr. Build. Mater., 12(5), 245-249. https://doi.org/10.1016/S0950-0618(98)00016-6.
  53. Sadat Hosseini, S.S. and Gandomi, A.H. (2012), "Short-term load forecasting of power systems by gene expression programming", Neural Comput. Appl., 21(2), 377-389. https://doi.org/10.1007/s00521-010-0444-y.
  54. Stoll, F.E., Saliba, J.E. and Casper, L. (2000), "Experimental study of CFRP-prestressed high-strength concrete bridge beams", Compos. Struct., 49(2), 191-200. https://doi.org/10.1016/S0263-8223(99)00134-8.
  55. Toutanji, H. and Saafi, M. (1999), "Performance of concrete beams prestressed with aramid fiber-reinforced polymer tendons", Compos. Struct., 44(1), 63-70. https://doi.org/10.1016/S0263-8223(98)00126-3.
  56. Xu, J., Zhu, P., Ma, Z.J. and Qu, W. (2019), "Fatigue flexural analysis of concrete beams reinforced with hybrid GFRP and steel bars", Eng. Struct., 199, 109635. https://doi.org/10.1016/j.engstruct.2019.109635.
  57. Xue, W.C. and X.H.W. (2007), "Experiment and nonlinear analysis of concrete beams with bonded prestressing CFRP tendons", Chin. J. Highw. Transp., 20(4), 41-59.
  58. Yonekura, A., Tazawa, E.I. and Nakayama, H. (1993), "Flexural and shear behavior of prestressed concrete beams using FRP rods as prestressing tendons", International Symposium on Fiber Reinforced Plastic Reinforcement for Concrete Structures (SP-138), Vancouver, BC, Canada, March.
  59. Zou, P.X.W (2005), Load-Deflection Response of High Strength Concrete Beams Pretensioned by Carbon Fibre Reinforced Polymers, Taylor & Francis, London, UK.